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Abstract—Device-free or passive localization techniques
allow positioning of targets, without requiring them to carry
any form of transceiver or tag. In this paper, a novel device-free
visible light positioning technique is proposed. It exploits
the variation of the ambient light levels caused by a mov-
ing entity. The target is localized by employing a system of
artificial potential fields associated with a set of photodiodes
embedded into an indoor environment. The system does not
require the existing lighting infrastructure to be modified.
It also employs a novel calibration procedure that does not
require labelled training data, thus significantly reducing the
calibration cost. The developed prototype system is installed
in three typical indoor environments consisting of a corridor,
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foyer, and laboratory and was able to attain median errors of 0.68m, 1.20m and 0.84m respectively. Through experimental
results, the proposed VLP technique is benchmarked against an existing wireless RSSI-based device-free localization
approach, and was able to attain a median error 0.63m lower than the wireless technique.

Index Terms—Indoor localization, visible Light positioning (VLP), device free localization (DFL), passive VLP, artificial

potential fields.

|. INTRODUCTION

OBUST Location based services (LBS) for Smart Homes
could enable personalized control of existing infrastruc-
ture including lighting, heating, air quality, and water temper-
ature/flow [1], [2]. This could have a tremendous impact on
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wellbeing and assistive living as it would allow appliances
to be controlled remotely. It could also be used to detect
emergencies or falls, and automatically contact appropriate
response personnel. This would thus enable the elderly to
maintain higher autonomy, while providing the family the
peace-of-mind of knowing that their elderly family members
are safe and well.

While cameras can provide a suitable solution for public
environments, they may create privacy concerns in residential
areas. It is desirable also that the solution would utilize readily
available hardware to facilitate ubiquitous deployment.

In the recent years, numerous wireless technology-based
solutions have been proposed and reported in the literature.
They utilized Radio Tomographic Imaging (RTI) [3]-[6],
energy minimization [7], [8], and machine learning approaches
(including: Support Vector Machines (SVM) [9], [10], Ran-
dom Forest [11], Hidden Markov Models (HMM) [12], and
Deep Learning [13]) to mention a few. These approaches
are commonly implemented using either the received signal
strength indicator (RSSI) metric, or the Wi-Fi channel state
information (CSI) metric. CSI approaches have been shown to
offer improved accuracy over RSSI approaches [14], however
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the metric is not readily available in current Wi-Fi equipment
and relies on legacy drivers [15], [16].

A major disadvantage of the wireless approaches is their
potential vulnerability to malicious activities, which could
lead to unlawful acquirement of location-based information
from unsuspecting users, thus creating serious privacy con-
cerns [17]. Other popular approaches include the use of
passive infrared sensors [18], [19], load cells [20], capacitive
sensing [21], electric field sensing [22]-[24], or microphone
arrays [25]. The main concern with existing approaches is that
they either require a significant deployment/calibration effort,
or that they are not yet available as standard commercial-
off-the-shelf (COTS) equipment. This makes it significantly
more difficult to provide ubiquitous deployment of the wireless
approaches for end users in the foreseeable future.

In recent years, light-emitting diode (LED) luminaires have
become very popular light sources in indoor environments.
In addition, they provide the opportunity to leverage the exist-
ing lighting infrastructure for a secondary purpose — indoor
object localization (sensing). Visible light sensing applications
can be classified into four groups: full-active: modified source
and tagged target, passive-src: unmodified source and tagged
target, passive-obj: modified source and untagged target, and
full-passive: unmodified source and untagged target [26].

The focus of this paper is on implementing a full-passive
localization system that does not require any modification of
the lighting infrastructure to emit signals, and can localize
tag-free targets. This offers unique challenges as full-passive
systems either assume that a roaming entity fully absorbs the
visible light as it occludes an area, or that the reflectance off
the target follows a deterministic model. Since the reflectance
is affected by the color worn by the target, calibration
requirements should be kept minimal to allow for multi-entity
calibration.

The CeilingSee approach reported in [27] employs a
machine learning algorithm to infer an occupancy count.
It can be technically categorized as full-passive since it uti-
lizes commodity COTS luminaires having no communication
functionalities, and can localize untagged targets. However,
the proposed solution requires the existing luminaire driver
boards to be modified to allow for the luminaires to act as
light sensors.

Another solution is reported in [28] where the luminaire
drivers are modified to output an ID number. Each luminaire
is co-located with a photodiode (PD). During every cycle,
the proposed system checks whether each PD’s current values
exceed a predefined threshold. This is used to detect whether
a person is present at one of several predefined locations, or
whether a door is open.

The LocaLight [29] prototype employs 3 ceiling mounted
COTS luminaires, and 5 PDs located on the floor, to detect
the shadow of a passing person. However, this solution only
identifies the presence of people (static or walking in a straight
line) rather than offering target level localization/tracking.

The novel device-free localization (DFL) adaptive
multi-target positioning (AMTP) algorithm is proposed
in [30]. It identifies locations of shadowed PDs on the floor,
and then clusters them into groups. The clusters are used

to identify probable targets. The main problem associated
with this approach is the limited real-world experimental
verification. Most of the provided results are based solely
on simulation. However, the simulation is performed using
somewhat unrealistic assumptions and models; making
the approach questionable for a real-world smart home
deployment.

The EyeLight solution [31] uses modulated ON-OFF keyed
luminaires, co-located with PDs to detect targets crossing
virtual light barriers, while the StarLight approach [32]
employs custom designed lighting panels containing multiple
LEDs with each LED being modulated separately. StarLight
detects shadowed PDs by calculating the normalized frequency
power change (for each PD-LED pair), considering them
shadowed if they exceed a predefined threshold. A simi-
lar detection strategy is employed by LiSense in [33] that
utilizes several ceiling-mounted modulated luminaires, and
a multitude of floor-mounted PDs, to perform 3D skeleton
reconstruction.

A simulation of visible light sensing is reported in [34],
based on a multitude of luminaires collocated with PDs within
an indoor environment. It proposes the use of either the
likelihood-ratio test, or mean spectral radius, as the system
variance indicators to enable indoor localization. The approach
looks promising. However, no results of real-world experi-
ments are provided in the paper. Besides, the number of lumi-
naires assumed in the simulation is quite high (i.e., exceeding
the quantity that would normally be deployed in a real-world
premise).

In the Smart Wall solution [35], a target is localized by
measuring the change it creates in the received signal strength
(RSS) of the ambient light, at an array of PDs embedded in
the wall. The system shows promising localization capability.
However, it relies on extensive fingerprinting making it a less
attractive option for real-world implementations.

Spring-relaxation is an energy minimization technique that
aims to reach an equilibrium state within a system of
springs [36]. It is realized by attaching a set of artificial
springs to the roaming target, with the other spring ends
being attached to known static locations. The system then
iteratively works to find the global minima, where the net
force applied by the springs to the target is minimized.
Traditionally, the approach has been utilized to locate a sensor
within a wireless sensor network(WSN) [37]. More recently,
the concept was applied to the low-power and low-data-rate
close proximity wireless ad hoc network-based DFL system
described in [7]. It has also been applied to localize a PD-based
tag for an active VLP system [38]. A Similar energy minimiza-
tion technique (originally employed for robot path planning)
is Artificial Potential Fields [39], [40]. Instead of using a
spring notation, it models the localization problem as a set of
attractive and repulsive forces, emitted from known locations.

Until now, the concept of potential fields have not been
applied to visible light-based DFL. A particularly attractive
benefit of DFL based on the potential fields approach is
that potential fields are more computationally efficient than
competing techniques such as particle filters [41], [42]. The
approach also maintains the valuable benefit of a dynamically
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TABLE |

FEATURE COMPARISON OF VISIBLE LIGHT POSITIONING SYSTEMS

Algorithm Works without Does not require labelled Localizes and tracks Extra infrastructure Experimental verification

LED modulation training data passive targets Investment

FieldLight Yes Yes Yes Low 2D localization + tracking

Smart Wall Yes No Yes Low 2D localization + tracking

CeilingSee Yes No No Low Occupancy Count

Tbrahim et al No Unknown No Low 2D region detection

LocaLight Yes Yes No Low 1D position estimates

AMTP No Yes localizes Very High Blocking LOS attenuates PD

signal

EyeLight No Activity recognition Yes Medium 2D localization + tracking +
requires labelled data activity recognition

StarLight No PD placement requires Yes High 2D localization + 3D skeleton
room layout reconstruction

LiSense No Yes Skeleton Very High 3D skeleton postures

reconstruction

assigned weighting scheme, which allows for high localization
accuracy across varying target speeds.

A novel device-free localization approach employing visible
light (VL-DFL) and artificial potential fields based localization
is proposed in this paper, called FieldLight. The approach
provides localization and tracking of targets without the need
to modify the existing lighting infrastructure, and without
the utilization of extensive labelled training data. It offers an
overall superiority over the previous discussed techniques as
demonstrated by the feature comparison given in Table I.

The main contributions of this papers work are summarized
as follows:

1) A novel VL-DFL algorithm called FieldLight is devel-
oped which can localize and track targets using a set of
potential fields attached to triggered photodiodes. To the
extent of the authors’ knowledge, this is the first reported
work that applies the artificial potential fields approach
to VL-DFL
A calibration procedure that does not require any
labelled training data is proposed for the developed
VL-DFL. This makes the system less labor intensive,
and easy to deploy.

The performance of FieldLight is evaluated by imple-
menting it in multiple full-scale environments. The
impact of various parameters on the localization accu-
racy is investigated.

The localization accuracy of FieldLight is experimen-
tally compared with an existing wireless DFL algorithm
in the same environment. As far as the authors are
aware, this is the first reported performance comparison
between wireless- and visible light-based DFL tech-
niques. FieldLight is demonstrated to be more accurate
than a state of the art wireless DFL technique.

2)

3)

4)

Il. SYSTEM OVERVIEW

Assuming an environment where the ambient light
level remains constant, the change in illuminance can be
calculated as:

AE = Er1 — ET0, (1)

where E71 and Ero represent two consecutive illuminance
samples in time, measured in lux. Since the PDs are mounted
on the walls rather than on the floor (as in the existing
approaches, e.g., [29], [33]), the shadowing influence caused
by a roaming target does not completely occlude the atten-
uated node, as the node receives dispersed multipath light
components from a number of luminaires available within
the environment. It is hypothesized that even though each
node receives illumination from multiple sources, the impact
from the closest sources remains dominant when the field of
view (FOV) remains unobstructed. This suggests that if the
shadowing target does not fully occlude the FOV, it would still
have some proportional attenuation effect on the amount of
light sensed by nearby PDs. To exploit this effect, FieldLight
uses an energy minimization concept in the form of artificial
potential fields, weighted by the attenuation seen at each
receiving node. All symbols used in this manuscript to outline
the FieldLight approach are included in Table II. Since Field-
Light assumes that background ambient light level remains
constant, care must be taken to either ensure the illumination
is predominantly made up of artificial light sources with a
constant output, or the system must be calibrated to account for
the changes in sunlight over the course of the day. In this paper
experiments were conducted during the early evening when
sunlight was minimal. Another consideration is the reflectance
properties of the roaming targets attire. FieldLight was trained
using a subject wearing dark attire to minimize reflectance
during the offline training phase.

Let N light sensing nodes be deployed around the perimeter
of the monitored area, within an indoor environment (Fig. 1).

Each node contains a PD, wall mounted at 1.4 m above
the ground, to ensure that no furniture occludes the line-of-
sight path between the luminaires and nodes. The sensing
nodes measure the illuminance of the visible light and employ
their onboard wireless modules to relay the information to a
centralized server. The server collects the illuminance values
from all PDs, detects which ones have been shadowed, and
uses this information to localize a roaming target.

The FieldLight system tracks a roaming target based on its
relative position to known wall mounted PDs (shown as the red
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Fig. 1. FieldLight algorithm overview. E represents a stream of illuminance values for each wall mounted node. An exponentially weighted moving
average (EWMA) scheme is used to create a long-term histogram ( L) and a short-term histogram ( S) for each node. The Bhattacharyya distance
is taken between each nodes L and S histogram ( D) which is used to generate a set of weights ( W) for localization. The weights are used to
calculate the net force on the system ( Fy), which continuously updates a position estimate ( Yy) until the system either converges, or reaches its

maximum iteration threshold. The final output position estimate for time t is then stored in X.

TABLE Il
FIELDLIGHT SYMBOLS

Parameter Description

Tlluminance

Maximum attenuation constant

Illuminance dataset

I[lluminance histogram

Smoothing factor

Indication vector

Illuminance histogram — long-term average
Illuminance histogram — short-term average
Histogram distance between IL and S

In(0) constant

Euclidean distance

Position estimate from previous timestep
Wall mounted node containing a photodiode
Thresholding weight set

Affected link threshold

Geometric travel threshold

Final weight set

Maximum iteration constant

Net force

Spring stepsize constant

RN UREMISIRNOPYAETSRFEH®

Spring energy threshold

circles in Fig. 2). The target does not carry any device (tag). Its
presence is determined, and the target is located based on the
visible light attenuation it causes to nearby nodes. A simplified
side-view of the FieldLight setup is shown in Fig. 3.

The system implementing FieldLight operates in two stages.
During the initial (offline) phase, the system collects two
sets of readings. The first sample set consists of illuminance
readings from all PDs when no target is present within

the environment. The second sample set involves the target
walking around the perimeter of the environment (as close
as practically possible), ensuring that each PD is passed by.
The system then calculates the maximum attenuation observed
by each PD as a difference between the readings of the two
sets. This results in the maximum reference threshold for
each PD.

During the second (online) phase, the system uses the
current illuminance sample to check which receiving nodes
experience an attenuation that exceeds the established, prede-
fined threshold. These nodes are then assigned as virtual field
anchor points and they receive a weight based on the ratio
between their current attenuation values, and the maximum
attenuation calculated during the initial offline phase. The
reasoning for this is that if a PD shows a similar level of
attenuation to the offline maximum, it is likely that the target
is within close proximity to the node. The iterative potential
fields approach then uses each anchor with its associated
weight, alongside the previous position estimate to converge
on a new predicted location. This is done by assigning an
attractive force to each of the affected nodes. An example of
this is illustrated in Fig. 2(b), where the blue arrows represent
the attractive forces.

I1l. ALGORITHM

As outlined in Section II, FieldLight requires the offline
phase to determine the maximum attenuation threshold for
each PD, followed by the online phase where a static or
moving target is iteratively localized.

A. Offline Phase

To find the maximum attenuation value for each receiving
node, the difference between the illuminance of the visible
light in an ambient non-blocked and blocked (shadowed)
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Fig. 2. FieldLight floorplan — (a) Foyer, (b) Corridor, (c) Laboratory. The yellow blocks represent the overhead luminaires used for localization.

In each environment 14 nodes (red circles) were deployed which measured the changes in ambient light caused by a roaming entity and transmitted

the information to a server for localization.

Y

~€Node FOV)~

Fig. 3. Side-view of a person partially occluding the field of view of a
wall mounted node.

conditions is calculated as:

2

fn = max Dy — min Dy,
n n

where S, is the scalar attenuation value at the nth receiving
node, Dy is the offline illuminance dataset with no target
within the environment, and D is the offline illuminance
dataset containing a target roaming around the perimeter of
the indoor site. The D; dataset contains illuminance values
recorded at the light sensors when a target is walking along the
perimeter of the environment. Its minima value is associated
with the target being within close proximity to a given node.
This is achieved by taking the minimum value from the set.
It is the largest attenuation experienced for the route, which is
assumed to correlate with an entity passing nearby the node.

B. Online Phase

The FieldLight approach is based on the assumption that
a roaming (or static) target prevents a portion of the ambient
light from reaching nearby PDs placed on the walls in some
fixed locations. To be able to calculate a target position from
a set of raw E values (produced by PDs), an appropriate
information feature (or metric) needs to be carefully chosen.
It should be resilient to both varying environmental condi-
tions, and random effects of a roaming entity. FieldLight
utilizes histogram distances as it’s metric. In the FieldLight
approach, a set of long-term histograms (L), that represent
the background state of E at the PDs; and a set of short-
term histograms (S), which represent the current state are
defined. The difference between the I and S histograms is
the feature that is used as a representation of the target’s
presence. The number of bins used by each histogram is
equivalent to the resolution of the PD-based sensing node.
Assuming that the output signal of each PD is digitized into
1000 states, to represent E between 1-1000 lux, the cor-
responding value range is [1, Z], where Z = 1000. Each
histogram is therefore constructed with Z bins. The value con-
tained in each histogram bin is based on the frequency of its
respective illuminance value occurring within a stream of data.
For example, a node recording an illuminance value of 319
lux will increase the value of the 319th bin, representing an
increased occurrence rate of the 319 lux value. These values
are then normalized to a frequency between 0-1 and weighted
based on their time-of-arrival. An example of the histogram is
shown in Fig. 4. When a person (or some other mobile object)
passes near a PD, the S histogram quickly diverges from its
steady-state values. Since the IL histogram diverges slower (as
shown in Fig. 4) the difference between the two can be used as
a feature to detect an object’s presence. To facilitate the use of
the histogram distance feature, two histogram sets are created
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Fig. 4. The effect of a moving persons presence on both the Short-term
(S) and Long-term histograms (L).

using an exponentially weighted moving average (EWMA)
scheme using:

hi = (1 —a)hi" 46 (EL), 3)

where: b/, is a histogram (with Z bins) for node n at the time ¢,
with every value of the histogram being within (€ [0, 1]);
o is a constant smoothing factor (€ [0, 1]); J is an indication
vector of the length Z that returns 1 for the index given by
illuminance value E!, and O at every other position.

Bhattacharyya distance [43] is chosen as FieldLight’s his-
togram distance metric as it can detect when the compared
histograms have different standard deviations, even if their
means are similar. This increases the sensitivity when a person
(or object) is located near the edge of a PD’s FOV thus causing
very small changes to the node’s received E values. In exist-
ing literature, Kernel and Kullback-Leibler distances have
been used for histogram-based wireless localization [7], [44].
A recent study on various histogram distances showed that
Bhattacharyya and Chi Squared distances perform well when
used for a spring-relaxation based wireless approach [34].
Bhattacharyya distance provided the highest accuracy across
all environments (e.g. 0.68m median error in the corridor
environment vs 1.33m for Kernel distance and 2.69m for
the Kullback-Leibler distance). It was therefore chosen as the
distance metric.

By using (3) to formulate each histogram in L and S sets,
while ensuring ag < ag, the Bhattacharyya distance between
L and S can be defined as:

Dy=—In(c+> VL -5), @

where: L, and S, represent the long-term and short-term
histograms for node n, created using (3), respectively; - is
the dot product, the small constant term ¢ is added to ensure
that no In (0) error occurs if no bin values overlap between
the I and S histograms.

After a distance metric has been defined, thus enabling
FieldLight to detect changes occurring around the nodes due to
object movement, a selection criterion is established to identify

and pick only the strongly impacted nodes, and to weigh
them accordingly. This is achieved by using a thresholding
process, utilizing: the Bhattacharyya distance for each node
(D1-N), and d (X, n), where d (X, n) is defined as the Euclidean
distance between the previous position estimate X, and the
node n. When FieldLight is first turned on, X is initialized to
the coordinate of the center of the entry doorway. Through
the thresholding, FieldLight collects two weights for each
receiving node.
The first weight is defined by:

m Dy >y
1 ns
W, = and d (X, n) < & 5)

0, otherwise,

where: y and € are predefined thresholding constants, with y
ensuring that only strongly affected links are selected, while
€ provides a geometric restriction on the maximum level of
target movement allowed between the chosen time steps.

The second weight uses the same thresholding condition.
However, it stores the current attenuation as a proportion of
the offline calibration value S,:

|mode (L,) — mode (Sy)| Dn >y
W2 = P " and d (X,n) <& (6)
0, otherwise,

where the mode() function returns the modal value (i.e. the
bin index with the largest value) of a given histogram.

After the weights are calculated for all receiving nodes,
the two weight sets are combined into a single set as:

(W! o W2) — min (W 0 W?)
max (W' o W2) — min (W' 0 W2)’
where o is the Hadamard product. This is performed to
normalize the weight sets since W' and W? have different
ranges, and maximum values.

After the histogram distances and weights are calculated
for each receiving node, FieldLight implements an iterative
potential fields procedure to both localize and track a moving
target. The maximum number of iterations per the time step
is defined in advance by the constant K.

In a single iteration, the FieldLight computes an attractive
force between the previous target position estimate, and each
affected node. The net force within the system is calculated
by summing the forces across the overlapping potential fields
using:

(N

N
Fe=1 LWy, ®)

n=1
where: k represents a single iteration (k iterates from 0 : X);
X, is a vector between the previous position estimate Y| and
the position of the nth receiving node; 7 is a scaling constant.
In each iteration, the current position estimate is given

using:

X, k=0

Y, = R
¢ Y—1+Fk, k>0,

©)
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Median Localization Error (m)

0.8 . . . .
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Affected Link Threshold

Fig. 5. Impact of affected link threshold, -y, on FieldLight’s performance
(shown as median localization error). Laboratory environment.

where X is the position estimate from the previous time step.
The final position estimate for the current time step can then
be found as:

Y. ‘fk‘ <Uand k <X
Y, k=K,

X = (10)

where U is the efficiency threshold that is used to terminate
the potential fields algorithm early if the field equilibrium has
already been reached (i.e., the net force on the system is small
enough).

IV. PARAMETER TUNING

For FieldLight to perform adequately, its parameter values
need to be carefully tuned to optimize the localization accu-
racy. In this manuscript all localization errors are calculated
by taking the Euclidean distance between the ground truth
and estimated positions. Fig. 5 and Fig. 6 show how varying
parameter values affect the overall localization accuracy within
the laboratory environment (Fig. 2(c)1/Fig. 7). The results
for the laboratory environment comparison is given here since
the LED luminaires were utilized in it for illumination — the
same as in most visible light positioning (VLP) approaches
presented in the literature.

The parameters shown in Fig. 5 and Fig. 6 were initial-
ized to the values used for wireless histogram localization
in [7], [44], [45]. Each parameter was then manually tuned
while keeping all others at their initial value. A recorded illu-
minance dataset from each environment was used to ascertain
which of the parameter changes produced the largest positive
influence on the overall localization error. The parameter with
the largest positive change was then re-initialized to the new
tuned value. The manual tuning was then repeated for all other
parameters, fixing one parameter to its new optimum value
each round. This was repeated until all parameters had been
tuned.

After empirically tuning the parameter values for each
environment, it was discovered that most parameters were
environmentally agnostic. This means that though the Affected

TABLE IlI
FIELDLIGHT PARAMETERS

Parameter Description Value
ar Smoothing Factor — Long-term 0.03
Qs Smoothing Factor — Short-term 0.7
c In(0) Factor 0.00001
Yroyer Affected Link Threshold 0.7
Ycorridor Affected Link Threshold 1.05
YLaboratory Affected Link Threshold 0.65
Fo) Geometric Travel Threshold 5
K Maximum Iteration Constant 6
T Stepsize Constant 0.06
U Energy Threshold 0.05

link threshold (y) was needed to be tuned for each envi-
ronment, the other parameter values could be kept constant,
which would minimize the required user input during the
calibration process. As it could be seen in Fig. 6, there is
a wide “optimum” range within which the parameters provide
adequate performance. For example, o has an acceptable
range between 0.03-0.05, ag - between 0.6-0.75, T - between
0.05-0.09, and U < 0.06.

Fig. 8 shows an example of the distance that the target
position estimate is updated by, with each iteration. For
example, if FieldLight has updated its position estimate 4 times
within the current timestep (iferation index = 4), the distance
moved represents Y4 — Y3. As shown in Fig. 8, the distance
moved decreases with each iteration, as FieldLight converges
towards its final position estimate for the current timestep. The
experiment was based on the extreme case where the previous
position estimate was far away from the current location.
The algorithm did not finish converging after 50 iterations.
At the same time, by using 6 as a value of X (Table III)
and 0.07m as an average iteration step, while also employing
the 10Hz E sample rate, the system can accommodate a
maximum target roaming speed of 4.2m/s. Since this is already
significantly higher than the average adult walking speed
(1.4m/s), the full convergence is not actually required. Besides,
achieving the full convergence would introduce an unnecessary
computational burden. This shows that careful considerations
should be undertaken when deploying the FieldLight system,
as the required maximum iteration number is intrinsically
linked to both the desired performance level, and the overall
network speed.

V. EXPERIMENTAL SETUP AND RESULTS

The FieldLight hardware consists of 14 wall mounted cus-
tom boards that were designed to take ongoing readings of
the perceived light level at a 10Hz sampling rate, and then
wirelessly transmit these reading to the dedicated processing
server, consisting of a laptop with an intel i7 processor,
running windows 10 [35]. Preliminary tests performed with the
nodes mounted within a range of heights of 0.75m-1.4m show
no noticeable impact on the localization accuracy. The sensors
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Fig. 6. The effect of varying parameter values on FieldLight's performance (shown as median localization error) for the Laboratory environment.
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Fig. 8. An example of FieldLights iterative convergence approach, for a
target that has travelled a significant distance since the previous timestep.
The ‘Distance Moved’ represents how much the output position estimate
is updated for each iteration of FieldLight.

Fig. 7. FieldLight Laboratory environment. The fluorescent tubes shown
were only turned on to produce a clear image. During experiments, only
the LED luminaires were turned on.

a measured change in RSS level for approximately 3m-4m
were eventually mounted at 1.4m high to ensure that they were  distance from the wall itself. This means that larger rooms
above the room furniture, to avoid occlusions. will require either ceiling mounted, or floor mounted sensors

Since the nodes are detecting changes in ambient light, (or fusion with another technology like wireless) to extend the
they do not need to be placed relative to the light bulbs. coverage to the center of the room.
However, careful placement is required to ensure coverage. The custom boards (receiving nodes) consist of the Renesas
In our experiments, we discovered that the sensors register Electronics ISL29023 Digital Ambient Light Sensor connected
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Fig. 9. FieldLight Foyer environment.

to an ESP 8266 microcontroller sampling the PD output,
and sending the data to the processing server over Wi-Fi.
The ISL29023 offers the onboard 50/60Hz flicker rejection
and UV rejection. It is also very affordable, thus facilitating
the potential for ubiquitous system adoption within smart
home environments (the prototype cost remains below USD
5 per sensor node). It is envisioned that the sensors will be
embedded within the walls, operating on mains power with
the power cables running behind the wall panels like regular
power conduits. Since only the photodiode will be visible
on the wall, this will not be conspicuous, and will not have
an unfavorable effect on an environments aesthetics. Once
VLC adoption becomes widespread, many smart appliances
will be equipped with VLC receivers (e.g. smart TV/fridge).
Since these appliances are commonly positioned against walls
and run off the mains power, they could potentially be used
to provide a secondary localization benefit, without requir-
ing the sensors to be embedded within the walls at those
locations.

The custom boards, were mounted on the walls in 3 exper-
imental environments (Fig. 2): a 7m x 8m foyer (Fig. 9)
with 1.4m node spacing, a 4m x 7m corridor (Fig. 10) with
Im node spacing, and a 4.8m x 9.6m laboratory (Fig. 7)
with 1.2m node spacing. All experiments were undertaken
in the evening so that the overhead luminaires provided all
the illumination within each test environment. The corridor
and foyer employed fluorescent tubes for illumination while
the laboratory utilized REX10CDLDIM LED luminaires. The
LED luminaires had a rated power of 13W, beam angle
of 90°, and were driven by a constant current of 350mA. The
fluorescent lights seen in Fig. 7 were not turned on during the
experiments at the laboratory.

To calibrate the system during the offline phase, a 1.84m tall
subject moved around the perimeter of each site (as close as
possible to the walls, while navigating around the furniture).
The E values were collected from each receiving node at
a 10Hz rate. The parameters of FieldLight were optimized
using empirical tuning, and the employed final values are given
in Table III.

Fig. 10. FieldLight Corridor environmentm.
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Fig. 11. FieldLight localization performance in all experimental
environments.

During the online phase, the target walked along a marked
path through each of the environments in a heel-toe fashion at
0.78m/s, with the steps being synchronized to a metronome.
[luminance values were recorded of the subject walking
3 times in each direction along the marked path, which was
combined to form a single dataset. This ensured that both
the step size and walking speed remained constant, and the
ground truth location was known at each time step. One of
the trials showing the ground truth path and estimated paths
for each environment is shown in Fig. 12, Fig. 13 and Fig. 14.
In the corridor, foyer, and laboratory environments, Field-
Light achieved median errors of 0.68m, 1.20m, and 0.84m
respectively. The cumulative distribution function (CDF) of
the localization error for all the three test locations are shown
in Fig. 11, and the median/95" percentile errors are shown
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Fig. 13.  Ground Truth path and FieldLight position estimates from a
single trial in the corridor.

TABLE IV
FIELDLIGHT LOCALIZATION PERFORMANCE

Environment Standard Minimum  Median 95t Maximum
Deviation Error (m) Error (m)  Percentile  Error (m)
(m) Error (m)
Foyer 1.40 0.04 1.20 1.65 8.83
Corridor 0.43 0.02 0.68 1.77 2.38
Laboratory 0.91 0.01 0.84 2.25 541

in Table I'V. Interestingly, the performance in the clear corridor
was similar (within 0.2m error difference) to the cluttered
laboratory for the first two error quartiles (Fig. 11). This
suggests that a cluttered environment has stronger negative
influence in areas where localization performance is already
poor. Another key observation was that the localization ability
in the foyer was significantly inferior to that in the other
two environments. This was mainly caused by the larger
dimension of the foyer. In both the corridor and laboratory
environments, the walking subject always remains within 3m
of a PD. However, in the foyer, the target walking through the

single trial in the Laboratory environment.

Median Localization Error (m)

0.5 . . . .
4 6 8 10 12 14

Number of Nodes

Fig. 15. Impact of number of light sensors on FieldLight’s performance
(shown as median localization error) in laboratory environment.

middle of the room was over 3.5m away from the nearest PD.
The impact of the traversing person on the RSS was extremely
low at this distance creating dead spots where the node is not
capable to pick up the motion. This resulted in the erroneous
output estimates.

The effect of reducing the number of receiving nodes
employed for the localization is shown in Fig. 15. As expected,
the localization accuracy decreases with fewer nodes.

To demonstrate how the FieldLight compares to the exist-
ing wireless-based approaches, that can be implemented
using modern COTS equipment, it was benchmarked against
SpringLoc [7]. SpringLoc has been proven to be one of the
most accurate approaches among the DFL techniques that
use the wireless RSSI metric. The laboratory environment
(Fig. 7) was chosen for the comparison. Springl.oc uses a
spring relaxation based DFL approach. It employs the Zigbee
received signal strength indicator (RSSI) metric and creates
virtual anchors within the environment, rather than employing
the nodes themselves as anchors. The same number of nodes
(14 nodes, each placed on the walls at a height of 1.4 m)
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Fig. 16. FieldLight vs SpringLoc in the laboratory environment.

TABLE V
FIELDLIGHT VS SPRINGLOC PERFORMANCE

Algorithm Standard Minimum Median 95t Maximum
Deviation Error (m) Error Percentile Error (m)
(m) (m)  Error (m)
FieldLight 091 0.01 0.84 225 5.41
SpringLoc 1.09 0.04 1.47 3.57 4.86

were utilized for both the approaches. FieldLight used the
PD-based sensors whereas SpringlLoc utilized Texas Instru-
ment CC2530 Zigbee radios.

The visible light based FieldLight surpassed the localization
accuracy of the wireless Springloc approach as shown in
Fig. 16 and Table V, when compared to the ground truth
path. However, at the 98™-100" bands, SpringLoc approach
displayed higher accuracy. This was because the wireless
signals can operate in non-line of sight scenario, whereas
the visible light-based nodes rely on the line of sight light
paths. This means that in some cases FieldLight could suffer
from a few large localization errors. For example, consider
the entrance to the work area shown in the top right corner
of Fig. 2(c). The ambient light level in this region is lower
as there are significant furniture items obstructing the light
propagation. When traversing this region, a roaming entity had
a negligible impact on the nearby PDs, which contributed to
several large localization errors in small areas, creating dead
spots. The impact of this is shown in the top right corner of
Fig. 14, as the target was temporarily lost as it passed in front
of the occluding office furniture.

VI. CONCLUSION AND FUTURE WORKS

Existing VLP approaches require either a tagged subject,
extensive infrastructure modifications, or significant offline
training effort. FieldLight removes these limitations, while still
providing at least a 1.2m median localization accuracy

within multiple indoor environments. The research confirms
that practical device-free VLP systems are plausible. However,
further work is to be done to expand FieldLight to enable
multiple targets tracking. FieldLights potential fields approach

is not computationally complex, and the current factor limiting
the maximum target speed is the 10Hz sample rate. If the
system is required to track faster targets, either the sampling
rate can be increased, at the cost of energy efficiency, or
the stepsize constant can be increased, at the cost of low
speed accuracy. Furthermore, FieldLight assumes there is a
linear relationship between the portion of a nodes FOV that is
affected by a target, and the total level of attenuation perceived.
If more precise models are developed to accurately model
this relationship, the overall localization accuracy could be
improved. FieldLight was calibrated while the target wore a
black t-shirt. While the system remains functional for multiple
apparel colors, the performance would degrade. This could be
addressed by utilizing multiple training models, for multiple
colored apparels. Finally, FieldLight’s performance degrades
because of the dead spots caused by the subject traversing
outside the sensing region of nearby nodes. Earlier work has
reported that roof mounted nodes can measure the change in
ground reflection to detect targets [27]. This suggests that
careful node placement along both the roof and walls can
potentially be used to ensure adequate coverage and optimize
overall localization accuracy. Another option could involve
fusing the FieldLight with a wireless DFL system to help
remove the dead spots, as supported by the 98™-100™ bands
of SpringLoc, though more comparative tests are required to
quantify the benefit a fused system could bring. Furthermore,
the RSSI metric used by Springloc is a coarse metric when
compared to Wi-Fi CSI. If CSI ever became readily accessible
in COTS equipment, a fused system with CSI and visible
light may bring further benefits. Finally, FieldLight uses
potential fields as it is a computationally efficient method of
providing localization, when compared to competing particle
filters. However, potential fields approaches could potentially
converge at incorrect local minimum, if the deployment area
was large. It would be interesting to try detect these cases, and
employ a backup algorithm (such as a particle filter) to ensure
correct convergence.
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