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Abstract— Accurate, reliable indoor localization or positioning 

is the key enabler for location-based services. Indoor localization 

can be broadly classified into two distinct categories. Active 

localization entails tracking a tag attached to or carried by the 

target. Passive localization, on the other hand, involves positioning 

a device free or untagged target. While passive or device free 

localization is comparatively more difficult to achieve, it is the 

preferred option for many applications. Vision-based techniques 

can accurately localize an un-tagged target. However, privacy is a 

significant concern and thus have limited usability for many 

applications, especially in non-commercial and residential 

settings. Passive localization using RF or wireless sensing is an 

unobtrusive option and has seen extensive research efforts in 

recent years leading to a saturated research field but no consensus 

solution. Researchers have been investigating alternative solutions 

that can facilitate robust passive localization. The rapid 

proliferation of Internet of Things (IoT) is bringing ubiquitous 

networked devices and ambient sensors into modern buildings. 

The consequential pervasive ambient intelligence and signals of 

opportunity can enable unobtrusive device free positioning. This 

article presents a comprehensive review of non-RF solutions 

covering visible light-, infrared-, physical excitation- and electric 

field sensing-based techniques. Limitations of the state of the art 

and potential future research directions are also outlined.   

 
Index Terms— Ambient assisted living (AAL), capacitive 

sensing, cyber physical systems, device free localization (DFL), 

electric field sensing, human computer interaction (HCI), human 

sensing, indoor localization, indoor positioning system (IPS), 

infrared (IR) sensing, internet of things (IoT), passive infrared 

(PIR), passive positioning, smart building, smart home, vibration 

based localization, visible light positioning (VLP).  

I. INTRODUCTION 

ndoor localization has been an active research topic for more 

than two decades. While outdoor positioning (e.g. GPS) is a 

mature technology, it does not work reliably inside buildings 

and there is no standardized solution for indoor positioning 

system (IPS) yet. Location-based services (LBS) within the 

built environment require robust and affordable positioning. 

The rapid adoption of Internet of Things (IoT) [1] is providing 

access to a ubiquitous network of devices and ambient sensors. 

This is opening up new opportunities for deploying IPS 

leveraging pre-existing infrastructure.  

Indoor localization can be broadly categorized into active 
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and passive localization. Active localization is similar to GPS-

based positioning where the target carries a device (or a tag). 

The positioning of the tag results in localizing the target. Active 

localization is useful for applications like asset tracking, 

navigation of mobile robots and many other use cases where the 

end user is carrying a device (e.g. a mobile phone). A multitude 

of options e.g. computer vision [2], light detection and ranging 

(LIDAR) [3], ultrasound [4], acoustic [5], geomagnetic 

fingerprinting [6], wireless or radio frequency (RF) [7], visible 

light [8], aroma fingerprinting [9] etc. have been investigated 

for active indoor localization. However, for many applications, 

relying on the target to carry a tag is not feasible. If the goal is 

to unobtrusively track an elderly, forgetful person, one cannot 

expect them to wear a tag (e.g. a bracelet) every day. The 

wearable device can also be forgotten or misplaced, get 

damaged or may require frequent battery changes. Having to 

carry a “tracking” device can be perceived as stigmatizing 

leading to reluctance to wear one.  Passive localization, also 

known as device free localization (DFL), is the method of 

localizing an untagged target. It does not require the target to 

actively participate in the localization process by carrying a tag.     

Passive localization is the key to providing ambient assisted 

living (AAL) in smart buildings. The application of DFL ranges 

from intrusion detection, fall detection and remote monitoring 

of the elderly, occupancy detection for energy efficient heating, 

ventilation and air conditioning (HVAC) and lighting, 

occupancy counting for emergency situations such as the 

evacuation of offices and public buildings, business analytics 

for retail applications, accessibility aids for visually impaired 

individuals etc. 

Based on the sensing modality, passive localization can be 

divided into six major categories: vision-, RF-, visible light-, 

infrared-, physical excitation- and electric field sensing-based 

techniques. The physical excitation methods can be further 

classified into localization using pressure and vibration sensing. 

The electric field sensing techniques, sometimes termed 

capacitive sensing, include both active and passive sensing. The 

DFL classification is shown in Fig. 1.  It should be noted that 

environmental sensors (e.g. temperature, relative humidity etc.) 

can accurately infer occupancy [10], but by themselves are not 

suitable for fine grained application like localization. Similarly, 

CO2 sensors are commonly used for occupancy detection [11]. 
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However, their slow response time, sensitivity to environment,  

dependence on external factors (e.g. ventilation) and sparse 

deployment [12] make them unsuitable for localization.  

Camera or vision-based techniques are widely used for 

surveillance [13], crowd counting [14] etc. Several studies have 

indicated that low-cost 3D cameras (e.g. Kinect) may be 

suitable for DFL purposes [15, 16]. However, vision-based 

techniques require favorable lighting conditions and have 

coverage blind spots due to occlusion. Most importantly, 

privacy concerns [17] make camera-based IPS in residential 

environments impractical. This is somewhat ironic given the 

ubiquitous presence of cameras embedded in smartphones, 

computing devices, gaming consoles etc. in modern 

households. We have therefore excluded vision-based 

localization techniques from this survey.  

Localization based on RF sensing can potentially utilize the 

pre-existing wireless network of a building. It can also operate 

in “through walls” scenarios. DFL solutions employing 

customized hardware and the channel state information (CSI) 

metric can be quite accurate with median error reaching below 

half a meter [18, 19]. However, CSI is only available with Wi-

Fi and thus preclude the majority of wireless technologies (e.g. 

Bluetooth, Zigbee etc.). Utilization of the universally available, 

received signal strength indicator (RSSI), lowers the accuracy 

and requires a significant number of wireless nodes to function 

[20]. This takes away the appeal of localization with pre-

existing infrastructure. Survey of the wireless DFL literature 

shows a vast discipline with a crowded research landscape 

leading to a high entry barrier for researchers. RF based passive 

positioning is also well catered for with many recent review 

articles. Interested readers are directed towards the survey 

papers and the articles within [18, 21-24]. RF or wireless DFL 

techniques have therefore been excluded from our article.  

A. Contribution 

There are many good review articles on indoor localization, 

published in reputable journals, as listed in Table I. However, 

the existing surveys either do not cover DFL or focus only on 

RF-based DFL or have been overtaken by significant 

technological and conceptual advances. For example, review 

articles [18, 21-24] consider only RF sensing based passive 

positioning. Articles [7, 25-28] consider various aspects of RF-

based active localization techniques, predominantly focusing 

on localizing a target carrying a smartphone. Both active and 

passive positioning based on only RF sensing are discussed in 

[29] whereas only active VLP is considered in [8, 30-33]. 

Passive positioning using  electric field or capacitive sensing is 

addressed in [34]. However, this article only considers electric 

field sensing, and localization is merely one among a multitude 

of human computer interaction (HCI) applications covered. A 

comprehensive survey that covers passive positioning using a 

large variety of sensing techniques can be found in the 2010 

article [35]. Given the fast-moving pace of localization research 

and the progress achieved in the last decade, this excellent 

article has unfortunately become dated. For example, the 

concept of VLP for passive localization was reported more than 

five years after this article was published. A 2017 survey 

covering several sensing techniques can be found in [36]. 

Nevertheless, this article only considers device-based or active 

localization.  Another survey covering DFL was reported in 

2019 [37]. However, this article discusses both active and 

passive positioning, does not consider indoor localization only 

and also does not cover many of the unobtrusive techniques 

available for DFL.  Therefore, there is a clear need for a 

comprehensive review on passive indoor localization 

techniques that do not use RF sensing. Our article offers the 

following contributions: 

1. An extensive overview of unobtrusive passive 

positioning facilitated by non-RF sensing techniques, 

addressing an identified gap in the literature. 

2. An in depth and comprehensive discussion on the 

limitations of the state of the art leading to 

opportunities for future research. 

Our review discusses works that report positioning (current 

location of the target) and/or tracking (successive locations of 

the target). Articles exploring synergistic applications like 

presence or occupancy detection, counting, pose identification, 

fall detection, target identification, gesture recognition etc. are 

not covered unless positioning and/or tracking were also 

explicitly investigated. We also do not describe basic concepts 

like ranging (estimating distance of the target from the sensor), 

positioning methods (e.g. lateration, angulation etc.), tracking 

algorithms (e.g. sequence estimators, Kalman or particle 

filters), classifiers etc. Many excellent tutorials and textbooks 

already cover these topics quite thoroughly.   

The following keywords (by themselves and in 

combinations) were used to search for relevant articles: indoor 

localization, indoor positioning system, device free 

localization, DFL, passive positioning, visible light positioning, 

VLP, IR (or infrared) positioning/sensing, capacitive sensing, 

 
 

Fig. 1. Classification of Device Free Localization (DFL) based on sensing modality. Vision- and RF-based techniques are not covered by this article.  
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electric field sensing, PIR, thermopile sensing, vibration based 

localization/positioning, human sensing, ambient assisted 

living, AAL, location based service, LBS etc. Based on our 

familiarity with the discipline, we decided to start the search in 

the IEEE XPLORE and ACM digital library databases. Web of 

Science and Scopus databases were extensively used. Google 

Scholar (and its “cited by” feature) were also heavily utilized. 

Given the linkage of localization to biomedical applications, 

PubMed were also utilized for article search. Publisher websites 

e.g. Elsevier (ScienceDirect), Springer, Hindawi were also 

searched for articles along with the social networking site 

ResearchGate. 

The rest of the paper is organized as follows. Section II gives 

a general overview of visible light-based passive positioning 

techniques. Section III introduces DFL using infrared (IR) 

sensing. Section IV discusses physical excitation-based passive 

localization techniques. Section V presents DFL based on 

electric field sensing. Section VI concludes the article with 

discussion on shortcomings of state of the art, open research 

questions and opportunities for future work. Table II lists all 

acronyms.  

II.  DFL WITH VISIBLE LIGHT SENSING 

Visible light positioning (VLP) [38] has attracted 

considerable interest from the research community in recent 

years for active localization. VLP systems have the potential to 

leverage the existing lighting infrastructure and have been 

gaining popularity in part due to the rapid uptake of energy 

efficient light emitting diode (LED) technology for 

illumination. Researchers are also attracted by the synergy that 

VLP has with the upcoming visible light communication (VLC) 

[39] and the ready access to light-sensors on ubiquitous 

smartphones. VLP also has some inherent advantages like 

security (signal confined within a relatively small locale), 

immunity from RF interference, absence of small-scale fading 

(the wavelength of visible light is much smaller compared to 

the surface area of a typical light-sensor) etc.  

The success of visible light-based active localization has 

encouraged researchers to explore VLP for device free 

positioning.  Passive VLP is a relatively new development with 

the earliest works reported in the literature in 2015 [40]. Some 

of the reported works demonstrate the potential of passive VLP 

with the aid of theoretical development and numerical 

simulations [41, 42]. However, prototype implementations with 

experimental results and localization performance [43, 44] are 

becoming more common. Passive VLP systems operate on the 

premise that the presence of the target alters the optical channel 

between light sources and light-sensors (e.g. photodiodes). 

These changes are often measured as variations to the light level 

or illuminance at a light-sensor present in the vicinity of the 

target (please see Fig. 2 for an example). The positioning can 

be inferred from the changes measured at a number of pre-

installed sensors at judiciously selected locations (e.g. on the 

wall [43, 45], ceiling [46], floor [40] etc.).  

A. Floor Inlaid with Light-Sensors 

In this scenario, positioning is determined from the shadows 

cast by the target onto the floor. Li et al. [44] develops StarLight 

based on this  concept. It uses bespoke VLC-enabled luminaires 

that are modulated for multiplexing purposes. A link between 

the light-sensor and a luminaire is considered to be shadowed 

TABLE I: RECENT SURVEY ARTICLES ON INDOOR LOCALIZATION 

 

RESEARCH SENSING TECHNIQUE DFL? COVERS NON-RF? 

Teixeira et al. [35] a ,2010 Multiple ✓ ✓ 

Yang et al. [25], 2015 RF   

He at al. [27], 2015 RF   

Xiao et al. [29], 2016 RF ✓  

Yassin et al. [7], 2016 RF   

Luo et al. [30], 2017 Visible Light  ✓ 

Brena et al. [36], 2017 Multiple  ✓ 

Grosse-Puppendahl et al. [34], 2017 Electric Field ✓ ✓ 

Jang et al. [26], 2018 RF   

Lashkari et al. [28], 2018 RF   

Zhuang et al. [31], 2018 Visible Light  ✓ 

Keskin et al. [32], 2018 Visible Light  ✓ 

Ma et al. [18], 2019 RF ✓  

Shit et al. [21], 2019 RF ✓  

Zafari et al. [22], 2019 RF ✓  

Denis et al. [23], 2019 RF ✓  

Al-qaness et al. [24], 2019 RF ✓  

Afzalan et al. [33], 2019 Visible Light  ✓ 

Khelifi et al. [37] b, 2019 Multiple ✓ ✓ 

Maheepala et al. [8], 2020 Visible Light   

Alam et al. (This article) Multiple ✓ ✓ 

_______________________________________________________________________________________________ 
a Dated article 
b Discusses both active and passive localization; majority of the non-obtrusive sensing techniques for DFL not covered 
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based on a predefined threshold. The prototype uses 20 light 

sensors along with twenty ceiling mounted LED luminaires 

within a 3.6 m × 4.8 m area. A mean angular accuracy of 13.60 

while detecting the position of a human’s body and four major 

limbs is achieved. It is able to track a mobile skeleton with mean 

and 95 percentile localization error of 0.04 m and 0.097 m 

respectively. StarLight is an extension of LiSense [40] that used 

5 luminaires and 324 light-sensors within a 3 m × 3 m testbed. 

While it was not evaluated for localization performance, the 

prototype was shown to attain a mean angular accuracy of 100 

for skeleton reconstruction.  

LocaLight [47] is a prototype system that employs floor-

embedded light-sensors wirelessly powered by an RFID reader. 

In contrast to StarLight, standard luminaires are used. The 

shadows cast by a subject walking between the sensor and the 

luminaire are detected by the light-sensors. With a one-

dimensional testbed of 3 luminaires and 5 sensor tags, Di Lascio 

et al. are able to locate a target within a range of 0.5 m. 

Zhang et al. [41] also propose to use a grid of light-sensors 

embedded into the floor. LED luminaires, mounted on the 

ceiling, cast shadows of the target onto the sensors. A luminaire 

to sensor link is considered to be obstructed if the received 

signal strength (RSS) dips below a predefined threshold. The 

positioning is estimated using a geometric model that finds the 

intersection of the obstructed links. A luminaire to light-sensor 

link is implemented to measure parameters that are used for 

numerical simulation. The simulation study reports a median 

error of 0.08 m in an 8 m × 8 m × 4 m room with 4 LED 

luminaires, and 81 light sensors that were inlaid in a 0.5 m × 0.5 

m grid on the floor. The system can track multiple targets (up 

to 10) in theory and simulation using an adaptive multi-target 

positioning algorithm. 

B. Ceiling Mounted Light-Sensors 

These systems co-locate the light-sensors with the luminaires 

for monitoring (typically the RSS of) the reflected signal at the 

sensors. The reflected light and therefore the positioning 

performance depends on several factors like clothing color, 

walking direction, luminaire-sensor separation [48]. 

Eyelight [46] is a VLP system that can track human 

movement and detect room occupancy based on ceiling 

mounted sensors. Nguyen et al. use time division multiplexing 

(TDM) to create orthogonal links between bespoke LED 

luminaries and light-sensors. For a prototype implementation, 

they co-locate four light-sensors with narrow field of view 

(FoV) alongside a luminaire to create a transceiver node. In a 

TABLE II: LIST OF ACRONYMS 

Acronym Meaning 

AAL Ambient Assisted Living 

ADL Activities of Daily Living 

ANN Artificial Neural Network 

AoA Angle of Arrival 

CNN Convolutional Neural Network 

CSI Channel State Information 

DFL Device Free Localization 

DNN Deep Neural Network 

DoF Degrees of Freedom 

EPS Electric Potential Sensor 

FoV Field of View 

FSR Force Sensing Resistor 

GRF Ground Reaction Force  

GT Ground Truth 

HCI Human Computer Interaction 

HMM Hidden Markov Model 

IoT Internet of Things 

IPS Indoor Positioning System 

IR InfraRed 

KNN K Nearest Neighbor 

LBS Location Based Service 

LED Light Emitting Diode 

LSTM Long-Short Term Memory 

MIMO Multiple Input Multiple Output 

MISO Multiple Input Single Output 

ML Machine Learning  

MLE Maximum Likelihood Estimator 

MLSE Maximum Likelihood Sequence Estimator 

MSE Mean Square Error 

PDA Probabilistic Data Association 

PIR Passive Infrared 

POF Plastic Optical Fiber 

RMSE Root Mean Squared Error 

RSS Received Signal Strength 

RSSI Received Signal Strength Indicator  

SNR Signal to Noise Ratio 

SVM Support Vector Machine 

SVR Support Vector Regression 

TDM Time Division Multiplexing 

TDoA Time Difference of Arrival 

ToA Time of Arrival 

ToF Time of Flight 

VLC Visible Light Communication   

VLP Visible Light Positioning  

WKNN Weighted K Nearest Neighbor 

WSN Wireless Sensor Network 

 

 
Fig. 2: Drop in ambient light level at three ISL29035 light-sensors for 6 
different positions of a subject (one of the authors) within a 3.6 m × 2 m space. 

The sensors are mounted on a wall 0.2 m from the boundary of the test-space. 

Authorized licensed use limited to: Massey University. Downloaded on October 19,2020 at 02:32:33 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030174, IEEE Internet of
Things Journal

 

45 m2 room, Eyelight is able to achieve 0.89 m median 

positioning error using 6 ceiling mounted transceiver nodes. A 

two-stage localization algorithm based on predetermined 

threshold of RSS at the sensors is employed. The first stage 

performs coarse detection by identifying movement within the 

“coverage” of a node. The second stage achieves fine grained 

localization by identifying which link is broken. They also 

report 93.7% occupancy count accuracy and 93.78% activity 

classification accuracy using Adaboost, a common machine 

learning (ML) technique. Eyelight is the extension of an earlier 

work that was able to detect whether a door was open or closed 

through passive sensing [49].  

Majeed and  Hranilovic report the theoretical development of 

a passive VLP system [42] that utilizes the channel sounding 

approach. This an extension of their earlier work reported in 

[50]. Light sensors located on the ceiling alongside VLC 

enabled luminaires are proposed. A maximum likelihood 

estimator (MLE) achieved positioning using the changes 

caused by the target to the optical channel impulse response 

between the luminaires (transmitters) and the light-sensors 

(receivers). They suggest using time of arrival (ToA) and/or 

time difference of arrival (TDoA) methods to measure the 

channel impulse response. Their simulation results show a root 

mean square error (RMSE) of less than 0.1 m. They also derive 

the Cramer-Rao lower bound of the localization method.  

Al-Hameed et al. suggest localization by adopting the 

concept of radar-like reflection of VLC [51]. They undertake 

the theoretical development of light detection and localization 

(LiDAL). They propose a multiple input multiple output 

(MIMO) system with a wide FoV single photodiode-based 

receiver and a multiple input single output (MISO) system using 

an imaging receiver. Simulation results show that in an 

otherwise empty 8 m × 4 m × 3 m room with 7 targets, the 

localization RMSE are 0.28 m and 0.16 m for 8 ceiling mounted 

MIMO and MISO systems respectively. The localization 

accuracy degrades once furniture is introduced in the simulation 

environment and the performance degrades further if the target 

moves in a nomadic, random pattern.  A subsequent simulation 

study [52], shows that an artificial neural network (ANN) can 

learn the LiDAL induced reflection to improve detection and 

localization accuracy.  

Yang et al. [53] employ reverse-biased LED luminaires as 

photodiodes (i.e. light-sensors) for occupancy sensing. While 

their CeilingSee system that utilized this novel design did not 

perform positioning, the sensing technique can potentially 

simplify the design of passive VLP systems.   

C. Wall Mounted Light-Sensors 

Localization is deduced from the change a target creates in 

the RSS of the ambient light measured by light-sensors 

embedded in the wall. Watchers on the Wall (WoW) [43] uses 

the change in RSS at wall-mounted light-sensors as a 

fingerprint and the weighted k-nearest neighbor (WKNN) 

classifier for positioning. The prototype system is able to track 

both a stationary and a moving target within a 2 m × 3.6 m area 

using 14 wall-mounted light-sensors with median errors of 0.07 

m and 0.12 m respectively. The work is an extension of 

Faulkner et al.’s proof of concept, Smart Wall, [54]. The same 

light-sensors are utilized by Konings et al.  [45] to develop 

FieldLight.  It uses the change in RSS caused by a roaming 

target to localize. However, rather than using a fingerprint 

approach, FieldLight localizes by modelling artificial potential 

fields [55] attached to the light-sensors that get triggered by the 

target when the measured RSS change exceeds a predefined 

threshold. Experiments conducted in three environments (7 m 

× 8 m foyer, 4.8 m × 9.6 m office and 7 m × 4 m corridor) show 

median errors of 1.2 m, 0.84 m and 0.68 m respectively. In a 

“same environment” benchmarking at the office location, the 

FieldLight is found to be more accurate than a state of the art 

DFL system that uses RF sensing [56].     

It should be noted that passive visible light-based techniques 

are also being investigated for gesture recognition than can be 

useful for HCI. We would steer the interested readers towards 

the recent works reported in the literature [57-61].  

III. DFL WITH INFRARED SENSING 

Passive IR (PIR) sensors are most commonly employed for 

localization based on IR sensing. A PIR sensor measures the IR 

radiation from a warm target (e.g. a human) within its FoV. 

These sensors are widely used as motion detectors for security 

alarms, automatic lighting etc.  Therefore, pre-existing sensors 

can potentially be leveraged for localization purposes. In 

contrast to VLP systems, the IR-based systems can work under 

any illumination condition. It should be noted that the human 

target is the source of IR radiation. Therefore, while IR-based 

positioning is device free, the objective is to localize the source 

of the signal, not the “agent of change”. One of the earliest 

examples of passive positioning using PIR sensors is reported 

in [62]. Lee et al. demonstrate the potential for positioning with 

the aid of simulation and some experimentation with 3 PIR 

sensors. There are many subsequent reported works [63-88] that 

have utilized PIR sensors for passive positioning. 

 
Fig. 3. Working principle of PIR motion detector.  

Pyroelectric elements

Differential 
Amplifier

Target/Heat source Movement

Output Signal

+ -

Authorized licensed use limited to: Massey University. Downloaded on October 19,2020 at 02:32:33 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030174, IEEE Internet of
Things Journal

 

The working of a typical PIR sensor is shown in Fig. 3. The 

two pyroelectric sensing elements are housed in their respective 

slots separated by a small gap. The elements convert the thermal 

energy received from the incident IR into electricity [89]. An 

IR emitting target entering the sensor’s FoV activates the two 

sensing elements with a time delay, causing alternate positive 

and negative peaks. The elements are connected to the opposite 

inputs of a differential amplifier. Due to common mode 

rejection, only the contribution from the moving target is 

retained while that of the static ambience is cancelled. 

Therefore, PIR sensors have inherent difficulty with stationary 

targets. The sensor’s Fresnel lens, which is constructed from a 

number of lenslets, focuses the IR emission on the sensing 

elements, helps control the number of zones, range, and angle 

of coverage [89] and plays a key role in positioning. By using 

custom designed Fresnel lenses along with masks and by 

organizing multiple sensors in array configuration, the 

detection regions can be made quite fine grained.  

A. Localizing with Binary PIR Sensors 

The basic principle of PIR sensor-based positioning is shown 

in Fig. 4. A sensor generates binary information indicating the 

presence/absence of a target within its detection zone. With the 

deployment of several sensors with overlapping coverage, the 

target can be localized within the intersection of the detection 

zones of the triggered sensors. Song et al. [63] report the 

development of such a region based positioning system. They 

deploy 6 ceiling mounted sensors in a 10.5 m × 6.6 m room, 

dividing it into thirteen different regions. They demonstrate that 

it is possible to track a moving target and localize it accurately 

to the correct region, resulting in a maximum error of 5.25 m, 

as defined by the dimensions of the distinct regions. Most of the 

reported works using PIR sensor-based localization start with 

this basic concept.  

Kim et al. [64] use ceiling mounted PIR sensors with 

overlapping coverage. They install 12 PIR sensors on the 2.5 m 

high ceiling of a 4 m × 4 m test area. The earlier version of the 

system performed coarse localization. If only one sensor 

produced an ON signal, the target is localized to be directly 

underneath sensor. If the outputs of two adjacent sensors were 

ON, the target’s location was assumed to be at a point midway 

between the two sensors. If three or more sensors were ON, the 

target was positioned at the centroid of the location of the 

corresponding sensors. They improve the localization by 

defining three output classes for the PIR sensors: inside, 

boundary, and outside of the sensing area and then using a 

Bayesian classifier. They conduct three experiments with 

targets between 1.6-1.8 m tall, moving at speeds of 1.9 km/h 

(slow steps), 2.6 km/h (normal steps), and 4.0 km/h (rapid 

steps). While they do not report any explicit statistic about the 

localization error, accuracy of “about 0.8–0.9 m” and about 

“0.2–0.3 m” are quoted for the coarse and the refined algorithm. 

Hao et al. [65] develop and implement a prototype system for 

tracking multiple targets. Their system utilizes sensor nodes 

made up of a 2 × 4 array of binary PIR sensors whose FoVs are 

controlled by Fresnel lens arrays and coded masks to produce 

“type I” and “type II” sensors respectively. Each node achieve 

a coverage of 1440 with fourteen detection zones covering an 

average of 100 each. The prototype system consists of 4 nodes 

deployed in a 9 m × 9 m room (each node at the mid-point of 

each side). The algorithm utilizes expectation-maximization 

scheme to determine the number of targets and positioning and 

then subsequent Bayesian tracking. Experimental results 

demonstrate simultaneous tracking of two targets in both 

“follow-up” and “crossover” scenarios with mean errors of less 

than 0.5 m. Their succeeding work with a distributive approach 

improves the scalability for large-scale deployment [66]. 

Jing et al. [69] report a proof of concept that tracks a walking 

target in a lobby for two scenarios. In their “non-overlapping” 

situation, 6 sensors are installed in a line on the ceiling. Two 

subjects, one at a time, follow a linear trace directly underneath 

the sensors. They estimate the walking speed (assumed 

constant) based on the time it takes for two consecutive sensors 

to turn on. Thus, assuming a linear trajectory, they are able to 

track the target. The mean error was found to be 0.394 m and 

0.35 m for the two targets. In the “overlapping” situation, they 

use 12 sensors on a rectangular grid and the target walk along 

pre-defined trajectories (not just straight lines). With the aid of 

Kalman filter-based tracking, the mean error for different 

trajectories vary from 0.595 m to 0.926 m.  

Sioutis and Tan [70] utilize space subdivision. Their sensor 

node consists of a cluster of 7 sensors housed in a 3D printed 

pod. They install 3 nodes on the 2.4 m high ceiling of a 5 m × 4 

m room. The room is thus divided into 700-850 unique areas, 

with each covered by a unique combination of sensors. Position 

is estimated by evaluating the state of the sensors.  Four 

different trajectories connecting six points are traversed by the 

target, briefly pausing at some locations while walking past 

others. While the localization accuracy is not explicitly given, 

the authors surmise the positional error to be less than 0.5 m. 

Yin et al. [77] track the room-level movement of two 

residents living in a smart home outfitted with five motion 

sensors. The data from the sensors are collected for a year while 

the two occupants followed their normal daily routines to 

develop naïve Bayes and hidden Markov model (HMM) 

 
Fig. 4. Localization of target within the intersection of the triggered PIR 

sensors. 

PIR1

PIR2

PIR3
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location estimators. The performance of the developed 

algorithms is evaluated over a one-week period, when the 

participants wore Bluetooth tags to produce ground truth. The 

accuracy of both estimators is found to be approximately 73% 

in identifying the room the target is located in.          

Luo et al. [79, 80] implement a system with 5 ceiling 

mounted sensor nodes placed on the four corners and the center 

of a 4 m × 4 m square. Each node consists of 9 PIR sensors 

arranged in a 3 × 3 grid providing 40 fine-grained radial 

detection zones through the use of two types of masks doing 

radial and bearing segmentations. The region based target 

location is initially [79] refined by a Kalman filter and a Kalman 

smoother. They conduct experiments in an office environment 

with the target tracing four routes along a 3 m × 3 m rectangle 

(one side, the perimeter, the diagonal and side-diagonal-side-

diagonal) at various walking speeds. The average RMSE is 

about 0.6 m. In a follow up article [80], they apply a two-layer 

random forest classifier for both tracking and activity 

recognition. The mean accuracy while classifying among five 

common daily activities is reported to be better than 92%. The 

mean positioning error is 0.85 m.   

Yang et al. [82] propose refining the coarse, zone based 

localization by utilizing an accessibility map and the A-star 

algorithm. Ten narrow FoV PIR sensors are installed in a 12 m 

× 7.2 m mock apartment. During the calibration period, an 

accessibility map of the apartment is developed as a heatmap 

with 0.1 m × 0.1 m grid based on the number of times the 

occupant visits the respective grid nodes during daily activities.  

The beginning of a route is taken as the start node of the A-star 

algorithm. At any given time, the current node is the location of 

the target. Eight candidate nodes are selected around the current 

node. The goal node is given by the grid point with the 

maximum heat score within the triggered sensor’s detection 

zone. The target node is determined by a cost heuristic function. 

For two investigated routes, the mean localization error was 

found to be 0.21 m which is comparable to the accuracy of the 

method reported by Kim et al. [64]  but with a significantly 

sparser sensor deployment density.  

Yang et al. [85] employs a mesh network of PIR sensors for 

tracking multiple targets. The sensors are equipped with a 

special lens that allows each sensor to have 6 overlapping 

detection zones. Each zone is represented by a “detection line” 

and if a target is detected within a zone, it is assumed to be on 

the corresponding detection line. The intersections of all the 

activated detection lines are candidate target locations. This 

bearing crossing algorithm for target positioning is further 

refined through K-means clustering and then a Kalman filter is 

applied to track the moving target. Experimental results with 9 

sensors produce mean tracking error of less than 0.8 m in a 10 

m × 10 m space with two human targets walking along several 

trajectories. This is an improvement of their earlier works 

reported in [72, 75, 76].  

The localization performance of a PIR sensor-based system, 

like any others, depends on the placement of the sensors. 

Vlasenko et al. [71] and Fanti et al. [90] discuss the optimum 

placement of the PIR sensors and develop optimization 

algorithms that consider various practical constraints (e.g. 

number of sensors, obstacles like tall furniture etc.).  

B. Localizing with Analog Voltage Output of PIR Sensors 

The works discussed so far have used the PIR sensors 

primarily as binary sensors (which is the typical mode of 

operation of common motion sensors). However, a PIR sensor 

generates a voltage signal proportional to the change in IR 

radiation received by the pyroelectric sensors. This raw voltage 

level is then converted to a binary value by comparing it to a 

predefined threshold. It stands to reason that this hard 

thresholding leads to some loss of information. Therefore, 

several works [67, 68, 74, 78, 81, 83, 86, 87] have used the raw, 

analog output of the sensors for localization purposes. By 

exploiting the more information rich raw output from the 

sensors, these solutions can localize with a smaller number of 

sensors compared to the binary sensor-based systems. Many of 

these works create parametric models linking the distance of the 

target from the sensor and the raw output of the sensor.  

Zappi et al. [67] extract features from the analog output of a 

pair of  PIR sensors, termed as clusters, to track people. Each 

sensor of a cluster is mounted facing each other on opposite 

walls of a 2.5 m wide hallway.  The space between the two 

sensors is divided into three regions: close to sensor 1 (within 

0.8 m of sensor 1), middle (stretch of 0.9 m in the middle) and 

close to sensor 2 (within 0.8 m of sensor 2). In their 

experiments, they use 3 clusters along the hallway and record 

two hundred passages of each class. The target is localized to 

one of these three regions under a cluster using a classifier. 

They are able to detect direction of movement with 100% 

accuracy. The accuracy of correctly identifying the location of 

the target within the three classes for naïve Bayes, support 

vector machine (SVM) and K nearest neighbor (KNN) 

classifiers, are 83.49%, 87.5% and 95.35% respectively. This 

work builds on [91] where features were extracted from three 

sensors to estimate the direction of a target’s movement and 

also to count the number of targets. 

Monaci and Pandharipande [68] observe that the sign of the 

output voltage of a triggered PIR sensor can indicate the 

direction of the target’s motion with respect to the sensor. They 

also find that when the detection regions of a pair of sensors 

partially overlap, it is possible to associate their corresponding 

signal levels to spatial zones. In their DFL system, each 

triggered sensor quantizes its analog output with two predefined 

thresholds. The ternary outputs from a pair of sensors with 

overlapped detection regions are then used to determine the 

occupancy within a fine-grained spatial zone. However, the 

localization is highly sensitive to the threshold levels and 

quantization steps.  HMM is used to deal with the inaccuracies 

arising from incorrect thresholding by characterizing the 

transition of spatial zone occupancy, with each zone 

representing a discrete state. A maximum likelihood sequence 

estimator (MLSE) determines zone occupancy and tracks the 

target.   The performance of the system for 1-D zoning and 

tracking is evaluated in a 6.4 m × 3.7 m space with 2 sensors. 

For the four simple trajectories investigated, the system is able 

to locate and follow the target correctly across the zones.  
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Narayana et al. [74] argue that an array of multiple collocated 

PIR sensors is more robust to false/low detection compared to 

a network of distributed sensors. They construct a tower 

housing two sets of 4 sensors and use their analog outputs for 

localization. They develop a model relating the distance of the 

target from the sensor to its peak-to-peak output voltage. The 

distance of the target from a sensor is estimated through zoning. 

This ranging involves forming detection zones for each sensor 

in the array by having different gains for each to make them 

output maximum peak-to-peak voltage at different distances. 

Two towers are deployed on 1 m high tripods at 900 angles with 

respect to each other at the ends of the hypotenuse of a right-

angle triangle with legs of 4 m. The center of the coverage of 

each tower coincides with the respective legs. They report 

localization error of 0.2 m and 0.6 m for less than 5 m and 10 

m ranges respectively in a large classroom with desks and other 

furniture. The system can also be configured to classify the 

height/width of the moving target.  

Mukhopadhyay et al. [81] also use a calibrated model that 

relates the peak-to-peak output voltage of the sensor to its  

distance from the target. Of the two ranging techniques 

developed from the parametric model presented in their earlier 

work [89], the piecewise linear one is found to be more 

accurate. Ranging is followed by localization using multi-

lateration and support vector regression (SVR). Their 

experimental setup consists of 4 sensors, that are time 

synchronized, deployed in a 7 m × 7.5 m area. The localization 

RMSE for forty test points is found to be 0.65 m and 0.85 m for 

SVR and multi-lateration respectively. For the same setup, the 

RMSE of Narayana et al.’s method [74] is 1.2 m. 

Liu et al. [86] use the “azimuth change” extracted from the 

raw output for positioning. They define the azimuth change as 

the absolute difference of the azimuth of the target with respect 

to a sensor at two locations. The extraction is based on modeling 

the PIR sensor as a second order dynamic system whose 

parameters depend on its physical properties. The obtained 

azimuth change information is used to build the observation 

model of a particle filter that tracks the moving target. Their 

prototype deployment has 4 sensors located at the corners of a 

7 m × 7 m open space. The target takes roundtrips along six 

predefined traces five times each. The mean localization errors 

are between 0.47 m (straight line trace) to 0.71 m (“horizontal 

snake-like curve”) resulting in an overall mean error of 0.63 m. 

The 80-percentile error is less than a meter for all six cases. 

They investigate the impact of the number of sensors and find 

the mean localization errors to be 2.5 m, 1.7 m and 0.9 m for 

one, two and three sensors respectively. They also show that 

their system is more accurate in correctly localizing a target 

within a 1 m × 1m grid compared to what Narayana et al. [74] 

achieved in a comparable scenario.  

Yang et al. [87] argue that the relationship between the 

sensor’s analog output and location of multiple targets is 

extremely complex and difficult to model. Therefore, they 

propose a deep neural network (DNN)-based approach for 

localizing multiple targets. They assume that the response of 

sensors at the presence of multiple targets can be approximated 

by the superposition of response to each target and additive 

noise. Their DNN, termed PIRNet, therefore consists of two 

modules. The first module demixes the signal and determines 

the number of targets. The other module extracts features and 

localizes the individual targets. Rather than giving the raw 

sensor outputs to the NN directly, they use signal processing 

and data augmentation to preprocess the data. They achieve 

mean localization errors of 0.43 m, 0.6 m and 0.82 m for one, 

two and three simultaneous targets respectively in a 7 m × 7 m 

open space covered by 4 sensors. The PIR sensors used for this 

work appears to be the same as those used by Liu et al. [86].  

Li et al. [78] specifically address the inability of PIR sensors 

to handle a stationary target by making the sensors rotate to 

create relative motion between the sensor and the target. Their 

sensing module is a turntable tower equipped with 16 narrow 

FoV sensors and a DC-motor for rotation.  They report an 

“accuracy” of 0.113 m while tracking a target following a 

pricewise linear “snake- like” trajectory in a test area of 6 m × 

6 m equipped with two sensing towers.  

Wu et al. [83] utilized a semi-transparent rotating shutter, 

driven by a stepper motor, to create non-linear IR flow into a 2 

× 2 PIR sensor array to detect and localize a stationary target. 

The peak-to-peak output voltage and “intersections points”, 

where the voltage signals between the two peaks meet with the 

half of the supply voltage, are used as the features for ML 

classifiers that perform zone level localization.  The sensor 

node is ceiling mounted at a height of 2.8 m. It has 12 radial 

segments of coverage zones with radial distances of 1 m and 2 

m and angular separation of 600.  The accuracy of the 4 

supervised classifiers, namely the SVM, KNN, naïve Bayes and 

decision trees, in identifying the target within the correct zone 

are found to be within 97.47% to 98.89%. The duty cycle of the 

output is found to be an effective feature for detecting whether 

the target has a side facing or front/back direction. The 

relatively high power consumption of the stepper motor is a 

significant drawback of this scheme. A low power alternative 

using an electro-mechanical vibrator to drive the shutter is 

presented in a subsequent work [92].  

C. Localizing with Thermopile Sensors 

Thermopile sensors are typically constructed from series-

connected thermocouples for sensing the IR radiation [93]. In 

contrast to PIR sensors, they measure the total amount of the 

incident IR flux, not its change. Therefore, they are able to 

detect a stationary target also.  They are commonly used for 

contactless temperature measurement in microwave ovens, 

cooktops, air conditioners, thermometers etc. Passive human 

positioning based on thermopile sensing has been reported in 

the literature [94-101]. Other than Kemper and Hauschildt [94] 

who propose to use bespoke line sensors, the reported works 

utilize commercially available thermopile array/grid sensors 

(the 8 × 8 Panasonic Grid-Eye being the most popular choice) 

which are essentially very low-resolution thermal cameras. The 

basic concept of thermopile based sensing of a target is 

illustrated in Fig. 5. The thermal image is privacy preserving as 

it does not contain any identifiable information. The application 

of image processing techniques like background subtraction, 

noise reduction (through averaging or filtering) can improve the 
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quality of the thermal image of the target followed by blob 

detection to infer the presence of the target. Parametric model 

(e.g. heat-distance relationship) calibration can also be applied 

for estimating depth or range.   

Hevesi et al. [97] report tracking with “an accuracy in the 

range of 1 m” using a ceiling mounted 8 × 8 array. However, 

the emphasis of the work is more on activity recognition. Basu 

and Rowe [98] discuss the utilization of the IR image captured 

from a ceiling-mounted thermopile array for people counting 

(up to four) using SVM classification and identifying the 

direction of motion using normalized cross-correlation between 

the time series of pair of pixels. While they do not perform 

explicit positioning, the image processing techniques utilized 

for feature extraction can be quite useful for localization. 

Thermopile sensors have also been used for occupancy 

detection [102], fall detection [103], activity recognition [104], 

respiratory flow monitoring [105], pose detection [106] etc.    

Kuki et al. [95] track human movement by capturing the 

thermal image with a ceiling mounted 4 × 4 array. The pixels 

associated with the target are detected after background 

removal using three “if-then” fuzzy rules on sensed 

temperature. The target pixels are then used to define the target 

area by blob detection. The polygon that connects the centroid 

of each blob is the target trajectory. For their experimental 

setup, the sensor is installed 2.73 m off the floor. A 1.58 m × 

1.58 m area underneath the sensor is the monitored zone. They 

track a target performing fifteen different motion patterns that 

include walking at various speeds, crawling etc. within 0.396 m 

× 0.396 m zones. They report a mean positioning error of 0.215 

m. They later extend the work to count people [107] and coarse 

positioning of multiple targets [108]. 

H. M. Ng [96] localizes using a network of wall-mounted 

thermopile sensors. He assumes that the output of a thermopile 

is related to the amount of incident IR. Therefore, if the 

temperature and area of the sensed target are constants, the 

distance of the target from the sensor can be estimated from the 

detected temperature. Temperature-distance calibration curves 

are derived for front and side-facing poses. Five sensors are 

installed on two perpendicular walls of a 4.6 m × 2.7 m room 

(three on the longer wall or along the vertical axis with the 

remaining two along the horizontal axis).  The positioning 

along each dimension is achieved by finding the distance 

corresponding to the highest temperature between the sensors 

along that axis. The positioning accuracy, presumably mean 

error, for a simple horizontal and a vertical trajectory is found 

to be within 0.5 m. He also accurately identifies common 

human activities such as walking past a doorway, lingering 

outside or entering a room. 

Chen and Ma [99] localize by  extracting the  angle of arrival 

(AoA) information from 2  wall-mounted, time synchronized 

16 × 4 sensors. Noise reduction through multi-frame averaging 

and then background subtraction are utilized to detect the target 

from the IR image. The position derived from AoA is further 

refined using a quadratic regression model. They monitor a 3 m 

× 2.35 m area with 2 sensors that are 3.3 m apart, installed at a 

height of 1.2 m. The mean positioning error for a “snake-like” 

trajectory is 0.1339 m. They also implement fall detection using 

KNN classifier. 

Shetty et al. [109] utilize an 8 × 8 array for target detection 

with Kalman filter-based tracking. They use bicubic 

interpolation to enhance the thermal image and then perform 

background subtraction. The extracted foreground is then 

denoised with a Gaussian filter. This is followed by binary 

thresholding and blob detection. The centroid of the blob, 

representing the target position, is tracked using the Kalman 

filter. While they do some initial testing to demonstrate a proof 

of concept, no localization experiments are conducted, and no 

positioning accuracy is reported.     

Chen et al. [100] classify target facing direction using an 8 × 

8 sensor. The raw IR images from the array are processed by 

applying background subtraction followed by linear 

interpolation and thresholding to create 32 × 32 binary matrices.  

They utilize convolutional neural network (CNN) to extract 

features from these binary matrices to train an SVM classifier. 

By integrating the array with a time of flight (ToF) distance 

sensor on a rotational target tracking platform, they are able to 

achieve 0.19 m localization RMSE. The experiments are 

conducted within a 1.2 m × 2.4 m rectangular area. The 

platform is placed in the middle of one of the longer sides and 

the target walks back and forth along the remaining three sides.  

Kowlaski et al. [101] utilize wall-mounted sensor clusters 

consisting of three 8 × 8 thermopile arrays mounted in a 

custom-designed 3D printed case. They employ two clusters to 

 
 

(a) 
 

 
(b) 

Fig.5. (a). Illustration of localization with thermopile array. (b) Example of 
typical image processing of heat signature captured by a thermopile with one 

of the authors standing in front of a Panasonic Grid-Eye.   
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cover a 2 m × 2.5 m area divided into twenty 0.5 m × 0.5 m 

cells. The sensor clusters are attached to the middle of two 

perpendicular walls at a height of approximately 1.5 m. SVM is 

used as the classifier to position the target within a cell based 

on the feature vector consisting of the temperature values 

registered at the sensor clusters. They collect 2128 samples and 

train the classifier with 75% of this data. For the remaining 25% 

data, the accuracy of the classification for positioning within a 

single cell and within a neighborhood of four cells are 73.1% 

and 93% respectively. 

Qu et al. [110] form temperature and shape signatures (to 

eliminate non-human heat sources) from the IR image captured 

from a wall-mounted  8 × 8 array. Interpolation is used to create 

a 71 × 71 image which is smoothened or denoised by Gaussian 

filtering.  Adaptive thresholding, making all pixels lower than 

the threshold to be equal to the threshold, is then used to 

eliminate the background. The pixel with the highest 

temperature corresponds to the relative location of the target in 

the sensor array which is then converted to actual location by 

using a parametric model. The system tracks target using a 

Kalman filter. In a 4 m × 4 m area with the target walking along 

the diagonal, the mean localization error is found to be 0.07 m. 

The system can track multiple targets (up to 3) simultaneously 

by data association through “energy characteristics”. This 

exploits the fact that humans having different shapes and 

clothes produce different heat signatures which cannot change 

markedly within the detection period. While the accuracy 

degrades, the system can track all three targets even for cross-

walking where the targets come together and then diverge.   

Narayana et al. [88] propose a fusion of PIR and thermopile 

sensors for positioning. Their earlier work [74] is leveraged and 

improved upon to develop a parametric model linking the 

analog output of the PIR sensor to the target’s distance, speed 

and direction. The PIR sensor acts a depth sensor providing an 

estimate of the range between the sensor and the target. Once a 

presence is detected by the PIR sensor, a collocated 32 × 24 

thermopile array captures the thermal image to provide an 

estimate of the target’s location in the other two dimensions: 

across the FoV cone axis and the height of the object. Thus, a 

single sensor node (termed FOCI) can localize the target by 

using a KNN classifier to match the pair of information from 

the two sensors. It should be noted that background subtraction 

and Gaussian filtering along with interpolation are used to 

improve the thermal image. For their experimental setup, a 

single FOCI sensor is mounted at a height of 1.2 m to monitor 

a 9 m × 8 m area. Training and calibration data are collected 

from twenty different individuals wearing different types of 

clothing on different days and walking at different speeds. For 

testing, ten targets (one at a time) walk randomly at various 

speeds. Twenty recordings for each target are taken. The 

median and 80-percentile error are 0.22 m and 0.35 m 

respectively. For multi-target tracking with two and three 

subjects, 82-percentile error of 0.88 m is achieved.    

We also noted a DFL system that employs IR cameras 

capturing the reflection of signal transmitted by IR LEDs 

mounted on those cameras from retroreflectors fixed on the 

walls [111]. The positioning is inferred from the occlusion 

created by the target passing between the camera and the 

reflectors. Santo et al. report a mean localization error of 

approximately 0.3 m with 2 cameras deployed in 3 

experimental setups in rooms with dimension of 3 m × 3 m, 4 

m × 5.5 m and 4 m × 7 m respectively. While the system is 

technically privacy preserving (no image of the target is 

captured), it may not be perceived as such. In fact, the authors 

themselves mention the need for investigating its acceptability 

since the IR camera looks similar to a normal RGB camera.  

IV. DFL BY LOCALIZING PHYSICAL EXCITATION SOURCE  

Whenever a person moves around indoors, they contact the 

floor with each step that they take. Each footstep can be thought 

of as the source of a physical excitation. The positioning of the 

person can be achieved by locating the source of the excitation 

i.e. the footstep. Therefore, while the target is untagged, the 

(footstep) positioning is equivalent to localization of a source.  

A. Pressure Sensitive Floor 

Floor embedded with piezo-electric/resistive pressure 

sensors is one of the oldest reported techniques for locating and 

identifying people. Such pressure sensitive floors are able to 

sense the force at which a subject’s foot hits the ground and can 

identify individuals by analyzing the ground reaction force 

(GRF) [112]. Pressure sensitive floors can be constructed from 

small panels supported by load cells as shown in Fig. 6. Early 

examples of such floors are the ORL Active Floor [113] and the 

Smart Floor [114]. Other alternatives include force sensing 

resistor (FSR) [115], grid of piezo electric wires [116], electro-

mechanical film [117], piezoresistive carbon granules mixed 

with rubber [118], etc.  

Liau et al. [119] construct a floor from 0.6 m × 0.6 m blocks 

with embedded load cell in the middle. Twenty-five blocks 

separated by 0.2 m are installed underneath a regular wooden 

floor in a 5 × 5 grid. They utilize a Kalman filter-based 

algorithm, probabilistic data association (PDA), to track the 

target. This is augmented with LeZi-Update to handle cross-

walking for the multi-target scenario. Personal profiles for 

individual users are created based on their respective GRF. The 

85-percentile error while tracking a single target tracing the 

perimeter of a 2.4 m × 1.6 m rectangle is 0.2828 m. While 

 
Fig. 6. Positioning on a pressure sensitive floor by localizing the center of 

pressure. Pressure sensors (e.g. load-cells) are embedded underneath floor 

panels.  

Authorized licensed use limited to: Massey University. Downloaded on October 19,2020 at 02:32:33 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030174, IEEE Internet of
Things Journal

 

tracking two targets with significantly dissimilar weights with 

one following the rectangular path while the other walking 

randomly around a small area, the localization error of 0.2828 

m is observed at the 76.25-percentile. Even though they track 

two targets moving on linear cross-walking trajectories, 

localization accuracy for that scenario is not reported.  

Andries et al.  [120]  install a floor constructed from a 

network of 104 tiles in a mock apartment. Each 0.6 m × 0.6 m 

tile has load-cells underneath its four corners. The data 

acquisition is done using the “smart tiles platform” introduced 

in [121]. They apply computer vision techniques by treating the 

load values read from the floor analogous to the light-intensity 

bitmap image generated by the image sensor of a camera 

respectively. Blob detection, where the blob is created by the 

target exerting force at the load sensors, is performed followed 

by localization and tracking of the blob. Background 

subtraction is applied to remove the contribution from other 

sources like furniture etc. They initially track a wheeled robot 

doing a figure of eight loop (approximately 2.5 m × 1 m) and 

obtain a mean localization error of 0.08 m. For a human target, 

the center of pressure of the blob is taken as the position of the 

target. They report a mean error of 0.13 m for a human going 

through a “morning routine scenario”. Large errors (1.5 m-2 m) 

occur when the target is close to heavy furniture. For a two-

target “receiving a visitor” scenario, the mean error is 0.2 m. In 

this situation, the large errors occur when the two individuals 

are in close proximity, occupying a contiguous space in terms 

of tiles. Daher et al. [122]  used the same floor for activity and 

fall detection. Data from an accelerometer, located at the center 

of each tile, is fused to improve the fall detection performance. 

Al-Naimi and Wong [123] use sensing units constructed of 

16 FSR sensors arranged in a 4 × 4 array within a 0.5 m × 0.5 

m plywood. The testbed has sixteen sensing units covering a 2 

m × 2 m space. The localization algorithm first segments each 

footstep and identifies the cluster of contiguous sensors 

(maximum of six due to the geometry of the layout and the size 

of a human foot) activated by each footstep. Each sensor is 

triggered at a slightly different time depending on when they 

come in contact with the foot. A pattern signal for each footstep 

is generated by combining the time delayed voltage signals. The 

centroid of this pattern represents the footstep’s centroid. The 

mean footstep localization error for a single target on straight 

and curved trajectories is 0.0767 m based on one hundred and 

twenty footstep data collected for each case during experiments.  

Murakita et al. [124]  uses 0.18 m × 0.18 m binary pressure 

sensors to cover a 37 m2 testbed. They consider the output of 

the sensors forming binary images. A particle filter is applied 

with both a linear Gaussian and a non-linear bipedal prediction 

model for tracking. The bipedal model is more accurate but is 

found to have more difficulty discriminating between multiple 

subjects. Ten targets walked a marked 30 m test course three 

times each. A mean error of 0.2 m is achieved with a maximum 

error of 0.59 m. The system can discriminate between two 

targets at 90% accuracy if they remain at least 0.8 m apart.  

Lan et al. [125] utilizes compressive sensing with multilayer 

binary pressure sensors where each layer of the pressure sensors 

is constructed from sponges sandwiched by two tin foils. The 

sponge layers have holes through which the two foil layers can 

come into contact when pressed by a subject’s footstep creating 

an electrical connection generating a one-bit output “1” for the 

corresponding layer. The observation space is divided into 

multiple zones with each being encoded with a binary code. 

Target detection and localization are treated as encoding and 

decoding respectively. Space encoding scheme based on low 

density parity check matrices is utilized with the decoding being 

performed using Bayesian inference. The testbed consists of 3.6 

m × 3.6 m area covered by six-layer binary pressure sensors 

organized in 36 zones as a 6 × 6 grid. They perform multiple 

experiments with 1-4 targets and accomplish grid level 

localization in real time. The localization accuracy is better than 

80% for up to 3 targets and it comes down to 50% for 4 targets 

indicating the need for a denser sensor grid. This a continuation 

of their earlier work [126] where they developed the detection 

and the localization algorithms.    

Many works (e.g. [113-118, 127-129])  use pressure-based 

flooring similar to the ones discussed in this section for activity 

detection, fall detection and target identification. “Intelligent 

carpet” using plastic optical fiber (POF) sensors [130] has also 

been proposed for footstep imaging. If used in an appropriate 

manner, these systems can potentially be used for localization. 

B. Vibration Sensing 

The basic idea of vibration-based localization is illustrated in 

Fig. 7. The floor or structural vibrations induced by the target’s 

 
Fig. 7. Vibration based positioning. The target is localized at the intersection of TDoA hyperbolas.  
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footsteps are measured with geophones or seismic sensors. The 

footstep event is identified apart from other excitation events 

(e.g. fall of a chair), typically with a classifier. With a network 

of distributed sensors registering the vibration signals resulting 

from the same footstep at different times, a TDoA algorithm 

can localize the excitation source, the footstep. It should be 

noted that since the origin time of the footstep is not known a 

priori, ToA cannot be used for localization purposes. Also, 

vibration waves propagating through a structure like floor 

experience exponential attenuation with distance. Therefore, 

the error of RSS-based range estimation has an exponential 

relationship with distance. In contrast, TDoA ranging error is 

linearly proportional to arrival time estimation making it more 

suitable for this scenario [131].  Vibration based localization 

has synergy with and can build on the techniques used for active 

source localization within other bodies of research. However, 

the floor is a complex and heterogenous propagation medium 

compared to air, water and free-space RF. One of the 

advantages of vibration based DFL is that it may be able to 

leverage pre-existing  sensors that are part of the structural 

health monitoring system of the building [132].  

Floc [133] is a footstep localization prototype that utilizes p-

wave geophone sensors. Chen et al. find that the ambient noise 

mainly manifests at lower than 63 Hz and they remove that with 

a high-pass Butterworth filter. A calibrated mathematical model 

is developed to detect footsteps with a reported 97% accuracy. 

After detection, the corresponding footstep is localized using 

TDoA. A proof of concept experiment is conducted in a 6 m × 

8 m cluttered office. Three geophones are installed on the floor 

at the vertices of a right-angle triangle (legs of 4 m and 3 m). 

Three subjects (one at a time) take three steps within this 

triangular space twenty times each. A mean localization error 

of 0.07 m is achieved.  

Bahroun et al. [134] theorize and experimentally demonstrate 

that the propagation velocity of the vibration wave in a bounded 

medium like a concrete slab is a function of the source-sensor 

separation. This makes range estimation, therefore algorithms 

like TDoA, subject to measurement error. They propose 

localization using the sign of TDoA instead. This capitalizes on 

the observation that even with varying propagation velocity, the 

order at which the vibration waves arrive at the sensors does not 

change; further distance still results in higher propagation time. 

The sign of the arrival time between a pair of sensors is used to 

define a zone of possible location of the footstep. If the space 

between a pair of sensors is divided by a perpendicular bisector 

of the line joining the pair, the source will be on the side of the 

sensor that receives the vibration signal earlier (positive sign of 

TDoA). Multiple such zones created from multiple pairs of 

sensors and known boundaries (like walls) localize the target. 

They conduct proof of concept experiment with 9 seismic 

sensors arranged as a 3 × 3 grid in a 3.6 m × 5.4 m space on a 

0.2 m concrete slab covered by a tiled floor. For seven footsteps, 

they report positional errors between 0.29 m and 0.68 m. 

Mirshekari et al. [135] use an SVM classifier to identify the 

footstep event followed by localization utilizing TDoA. Since a 

vibration wave is dispersive in nature having multiple 

frequency components with different velocities, the algorithm 

uses signal decomposition to group components with similar 

propagation characteristics.  Since the floor is a heterogenous 

medium, the propagation velocities also depend on the location. 

An adaptive multi-lateration based on heuristics mitigates this 

by constraining the search space. The algorithm requires a 

minimum of 4 sensors for localization. Experiments are 

conducted in three different locations with three individuals 

(one at a time) walking multiple traces at various walking 

speeds within a 5 m × 4 m space. They conclude that when the 

footstep is within a polygon formed by the sensors, the 

localization accuracy improves. An overall median localization 

error of 0.38 m is achieved. The localization accuracy can be 

traded off with the number of deployed sensors. Further 

refinement is proposed in [136] by using a model transfer 

approach to improve footstep detection. They project the data 

into a feature space in which the structural effects are 

minimized for more robust detection. This research group has 

published several other synergistic works that  characterize the 

vibration wave propagation [137], perform occupancy detection 

[138], fall detection [139], target identification [140], 

occupancy traffic estimation [141] etc.  

Shi et al. [142] from the same research group report multiple 

target localization of three concurrent walkers. Since footsteps 

from multiple targets are not synchronized, only partial 

overlaps occur between vibration signals induced by concurrent 

walkers. Furthermore, stepping frequencies and walking 

patterns vary among individuals. Therefore, the heel strike 

timing for concurrent walkers may not be also completely 

overlapping. The footstep event detection is done with the raw 

vibration signal. They decompose the detected vibration signal 

using wavelet transformation, identify the number of targets 

and extract the onset of footstep signal (i.e. the heel strike). 

Each target is then localized independent of each other using 

TDoA. Experimental setup uses four geophones monitoring a 3 

m × 4 m area. The localization is performed for three scenarios: 

cross-walk, side-by-side and follow (three steps away) with a 

mean localization error of 0.65 m. 

Poston et al. [131] propose a robust localization algorithm 

that takes the distortion experienced by the vibration wave 

propagating within a building's structure into consideration. In 

contrast to other works, they use pre-existing  sensors which are 

already embedded as part of the building’s structural dynamics 

instrumentation. They classify two types of footsteps. The 

compression case when the footstep is directly over one of the 

sensors, the vibration waves experience little distortion; the 

location of the footstep is essentially that of the sensor. The rest 

of the footsteps are classified as the general case with wave 

distortion and the localization is performed using TDoA after 

footstep detection. The footstep detection is achieved with a 

matched filter where the impulse response of the filter is 

constructed from representative excitation signals collected 

during the calibration process. Experiments are performed in a 

25.5 m × 2 m corridor and a 15.8 m × 17.2 m lobby of a 

building. Both areas had 12 sensors. The localization RMSE 

with the target walking along linear trajectories are 0.6 m and 

0.8 m respectively.  This work is an extension of the preliminary 

efforts reported in [143]. Poston also extends the work [144] to 
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account for two targets simultaneously by applying Kalman 

filtering and multiple hypothesis tracking.       

Alajlouni and Tarazaga [145] develop a computationally 

simple algorithm based on heuristics and utilize the fact that 

sensors nearer to the footstep register higher energy compared 

to the distant ones. Simple peak detection algorithm is applied 

for footstep detection. The energy received at the sensor 

exceeding a predefined threshold and within a predefined time 

window ending at the peak of the detected vibration signal is 

computed. The footstep’s position is the weighted average of 

the sensors’ locations with the corresponding measured energy 

as the weight. The work is an extension of the concept reported 

in [146]. The testing is done in the same instrumented building 

that Poston et al. [131] experimented in. With the target 

following a linear trajectory back and forth along a 13 m × 2 m 

corridor, the 80-percentile localization error is 0.7 m.    

Vibration based localization is highly dependent on correctly 

identifying footstep-impact events from similar spurious events 

like objects falling. Low SNR due to ambient noise can also 

make the detection of footstep-induced floor-vibration 

signatures difficult. Drira et al. [147] develop an accurate 

classifier to identify footstep-impact event. After analyzing the 

event signals within a range of 10-260 Hz, they conclude that 

combining information from multiple frequency components is 

the key to accurate event identification. Also, using both low 

and high frequency components increase the accuracy of the 

classifiers. Another relevant study conducted by Lam et al. 

[148] suggests focusing on the vibration signal components 

around natural frequencies of the structure to increase the SNR. 

Vibration based localization is also impacted by varying 

rigidities of structural floors, obstructions, variation of the 

signal due to shoe types etc. Drira et al. [149] propose using 

physics-based models in the interpretation of vibration 

measurements as an effective way to minimize these effects. 

While no localization is performed in these research works, the 

findings can help design more robust localization techniques. 

V. DFL WITH ELECTRIC FIELD SENSING 

Electric Field sensing involves measuring the change in the 

capacitive coupling between the target and the objects present 

in the environment. In the literature, when a transmitter actively 

generates an electric field, with the target changing the field, it 

is commonly referred to as capacitive sensing. In contrast, the 

transmitter-less sensing that measures changes in the ambient 

electric field by the target’s presence and movement, is 

commonly termed as passive electric field sensing. 

A. Localization with Active Sensing 

There are three sensing modes for active capacitive sensing 

as explained by Zimmerman et al. [150] and Smith et al. [151]: 

transmit mode, shunt mode and loading mode as shown in Fig. 

8. In transmit mode the signal from a transmitter is coupled by 

the subject’s body, which then becomes an electric field emitter. 

This only happens when the target is very close to the 

transmitter and the body effectively becomes an extension of 

the transmitter. In shunt mode, the target’s body conducts a 

portion of the signal to ground. The remainder of the signal 

which is not blocked by the target can then be measured at the 

receiver. This happens when the target is not close to either 

electrode. In loading mode, there is no receiver and the 

environment effectively forms the second plate of the capacitor 

to ground (Fig. 8). Loading mode capacitive sensing underpins 

the popular touchscreen technology and is also the most 

common mode of active sensing for localization. 

Savio and Ludwig [152] develop the Smart Carpet, one of the 

earlier capacitive systems, using fabric with conductive wires 

sewn into it. The wires are formed into serpentine shapes to 

construct 0.15 m × 0.15 m panels that are used as the plate of a 

capacitor in loading mode. When a target’s foot is in proximity 

to a panel, the measured capacitance increases. Predetermined 

thresholding is used to identify which plates have been 

activated by the target’s footstep. Three different techniques are 

used to cluster the groups of squares associated with a single 

foot: simple heuristics, MLE and rank regression. The 

midpoints between successive footprints are used to estimate 

the trajectory. They implement a 2.4 m × 2 m prototype using 

180 panels. Twenty-four test subjects (including children and 

adults of both genders) walked on multiple trajectories. The 

mean square error (MSE) of localization are between 0.0187 m 

(line) to 0.431 m (C-shape) for various trajectories. Lauterbach 

et al. [153, 154] develop another similar system, SensFloor, 

which uses conductive triangles embedded in a textile with a 

density of 32 triangles per m2. As with the Smart Carpet, these 

triangles form the plate of the capacitor in loading mode. The 

floor is later used with hip mounted accelerometers to identify 

individuals [155]. A Kalman filter is used to improve the 

tracking of people around the room and implement multiple 

subject tracking. However, the accuracy of the system is not 

quantified. 

Rimminen et al. [156] are similarly able to track occupants 

in a room with conductive panels underneath the floor forming 

one plate of a capacitor whilst sensing in the loading mode. A 

floor of a 4 m × 4.5 m room is embedded with 0.25 m × 0.5 m 

sensor panels. A mean positioning error of 0.21 m is achieved 

while tracking a moving target. Multiple walking speeds are 

investigated, with smaller positioning error at lower speeds. As 

a person walks, the footsteps alternate from side to side, 

deviating from the subject’s actual course. A Kalman filter is 

shown to perform better than simply tracking the centroids of 

successive footsteps. A particle filter is used for multiple target 

tracking. Two targets can be individually separated with 90% 

accuracy if they are more than 0.8 m apart and with 99% 

accuracy if they are more than 1.1 m apart. This is an 

improvement of their earlier work [157] where they 

demonstrated that the observed signal pattern is different when 

a person is lying on it as opposed to standing on it. They also 

implement fall detection in a later work [158] by classifying the 

poses based upon their contact area amongst other metrics. 

CapFloor [159] uses two sets of parallel wires orthogonal to 

each other with each wire forming a capacitive plate in loading 

mode. A person walking above alters the measured capacitance 

in any wire underneath. Since there are two sets of wires in 

orthogonal directions, a person is above at least one wire in each 

direction, with the intersection point of these wires being the 
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target’s estimated position. Braun et al.  state the positioning 

error to be “in the range of” 0.5 m. 

Sensing Floor, presented in [160], employs thirty-six 0.09 m 

× 0.09 m copper foil squares, spaced 0.01 m apart, embedded 

underneath 0.6 m × 0.6 m MDF panels. As a foot comes in 

proximity to the floor, the loading mode capacitance between 

the floor and the foot is determined by the overlap of the foot 

and the panel underneath. The measured capacitance forms a 

low-resolution image that is interpolated to improve the 

resolution. Subsequent binary thresholding followed by blob 

detection results in footstep detection. Faulkner et al. estimate 

median position error of 0.0135 m and a median angular error 

of 10.40 for stationary foot placement. This work is extended 

[161] to extract various poses for a target lying on the floor and 

tracking a moving target. The median localization error for a 

single target moving along a testbed of 2.4 m × 1.2 m over 

twenty two trajectories is 0.022 m. 

Akhmareh et al. [162] use 4 loading mode capacitive sensors 

affixed to the walls. Each sensor, constructed from small copper 

clad tiles (0.08 m × 0.08 m), is positioned at the center of each 

wall at a height of 1.15 m from the floor. The tiles are connected 

to a 555 timer so that the change in capacitance causes a change 

in output frequency. The system uses fingerprinting to match 

live samples taken to the nearest grid point. They report 0.2 m 

mean localization error for static positioning in a 3 m × 3 m 

room that also had interference sources such as a fridge and 

metal cupboard in it. The work is further extended by Tariq et 

al. [163] where they apply multiple ML classifiers and the 

Random Forest improves accuracy to 0.05 m. In a later work 

[164], they improve the sensors to enable mobile target tracking 

with NN. They report mean error of 0.307 m and 0.326 m for 

1D-CNN and Long-Short Term Memory (LSTM) respectively.  

All the works discussed in this section so far have used 

loading mode capacitive sensing. TileTrack [165], on the other 

hand, uses transmit mode sensing. An additional electrode is 

placed in the room to receive a 32 kHz square wave transmitted 

from 0.6 m × 0.6 m floor tiles. A target between the electrode 

and the floor tile changes the amplitude of the square wave. The 

80-percentile error for a stationary target is 0.1 m with the 

largest error of 0.143 m.  If a moving target’s feet do not fall 

across multiple tiles, they can only be positioned at the center 

of that tile. Several different paths are tested with a maximum 

error of 0.407 m. This work is further extended in [166] where 

the floor of a 69 m2 apartment was fitted with either 0.3 m × 0.3 

m or 0.6 m × 0.6 m squares. Only the squares close to the 

target’s previous position are tested. If the target “disappears”, 

the whole apartment is searched until they are found again. If 

the target enters an untracked room such as the bathroom or the 

balcony, they are reset to be at the center of that room until they 

reappear. Tracking is initiated as a person enters (appears) 

through the front door and is removed if they exit (disappear) 

by the front door. Some furniture, the sofa and the bed, have 

contact sensors to further aid with the tracking. They also 

perform a fourteen-day living test with an individual living in 

the apartment as normally as possible. Actions are annotated 

with a voice recorder so that they can be matched up with the 

data when it is processed. The 90-percentile localization error 

is found to be 0.07/0.11 m for standing on 0.3/0.6 m tiles. For 

moving target, the 90-percentile error is found to be 0.17/0.33 

m on 0.3/0.6 m tiles. 

B. Localization with Passive Electric Field Sensing 

Passive electric field sensing is opportunistic in nature and 

does not require a transmitted signal. Electric field emitted by 

the mains (50/60 Hz) powerline and the static electric field 

between the ground and the ionosphere present themselves as 

signals of opportunity. These electric fields are perturbed by the 

movement of an earthed body i.e. the target [167] and present 

an opportunity similar to shunt mode active sensing. Also, as a 

person walks on the floor, static charge and resulting electric 

potential build up due to the triboelectric effect. The movement 

of the charged target also causes change in the electric field. 

Positioning is determined by measuring these changes in the 

ambient electric field caused by the target. Figure 9 shows a 

 
 
Fig. 8. Capacitive coupling and three modes of capacitive (active electric field) 

sensing.  
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typical method of localization using passive electric field 

sensing.  

Prance et al. [167] measure the change in the AC powerline 

electric field with the aid of electric potential sensors (EPS) for 

target localization. Through experimental data collection, they 

demonstrate that the electric field’s amplitude reduction caused 

by the target is proportional to the inverse of its distance from 

the sensor. By measuring the electric field amplitude at four 

sensors, the ranges of the target is estimated for subsequent 

localization using lateration. The 4 sensors are placed along the 

perimeter of a 3.52 m × 3.52 m square with each sensor at the 

midpoint of each side on a 1 m tripod.  They quote “localization 

accuracy” of approximately 0.1 m when the target moves 

linearly between the opposite pairs of sensors. The accuracy 

deteriorates for circular and zigzag trajectories. While the 

estimated trajectories are plotted, no accuracy values are 

reported for these cases. 

Grosse-Puppendahl et al. [168] develop Platypus, a 

combined identification and positioning system. Six EPS are 

placed on the ceiling at known positions to monitor a 2.5 m × 2 

m area directly underneath. A parametric model is developed to 

perform ranging based on electric field measurement leading to 

localization using lateration. The change in electric potential 

with respect to time is then used to identify said subject. The 

median position error is found to be 0.13 m for “slow walking” 

and 0.16 m for “normal walking”. User identification is found 

to be 75% accurate for 30 participants. Fu et al. [169] then 

extend the work by using a grid of passive electrodes 

constructed from insulated copper wires underneath the floor. 

Regions of interests are identified based on the activated 

horizontal and vertical electrodes. The center of the region of 

interest, which is taken as the footstep’s center, is estimated as 

the weighted average of the activated electrodes’ locations. A 

mean position accuracy of 0.127 m is achieved. While they 

discuss how the system could potentially perform multi-target 

tracking, no experimental study for such tracking is reported.  

Tang and Mandal [170] derive a parametric model between 

the reduction in electric field amplitude caused by the target and 

its distance from the EPS. This calibrated model is used for 

ranging followed by localization using lateration. They perform 

localization experiments in an 8 m × 10 m and a 5 m × 8 m room 

with three sensors positioned at 1 m height in each room. The 

target follows several trajectories and the mean error varies 

between 0.104 m and 0.272 m. Simulations suggest that the 

localization accuracy can be improved with denser sensor 

deployment. They are also able to identify between 6 

participants with a 98.3% success rate and attain occupancy 

estimation (< 10) with an accuracy of 89.03%. They also show 

that by knowing the number of targets (through occupancy 

estimation), it is possible to track two targets. With 6 sensors in 

a 3 m × 3.5 m area, they attain mean and 95 percentile errors of 

0.2 m and 0.78 m respectively.   

Zhou et al. [171] develop P-Loc that localizes by measuring 

the impedance change in the existing electric powerline caused 

its coupling with the human body. This an extension of E-Loc 

reported in [172]. In both systems, the impact of the coupling is 

observed away from the 50/60 Hz AC mains to avoid 

interference. A 70 MHz sine wave signal is injected into the 

ground wire and its RSS is measured at multiple sockets along 

the line to generate the location fingerprint.  Impact of noise 

resulting from ambient changes is mitigated by outlier removal 

and high pass filtering that assumes that target is faster than the 

environmental changes. In P-Loc, a multi-layer perceptron 

(MLP) is employed as the classifier to locate the target at a grid 

level. Further accuracy is achieved through applying a tracking 

model based on HMM and Viterbi search algorithm. In contrast, 

the E-Loc employs an SVM based classifier for coarse, grid 

level localization. Both systems are evaluated in a 6 m × 10 m 

multi-room test location divided in 1.2 m × 1.2 m grids with 5 

sensors. E-Loc achieves 90.76% localization accuracy in 

identifying the location within a cell. P-Loc achieves 91.07% 

grid level accuracy and 0.48 m mean localization error. 

Conductive inkjet technology is utilized by Gong et al. [173] 

to exploit both active and passive electric field sensing. Their 

prototype is essentially a 2.5 m × 0.3 m sensing surface made 

of flexible substrate that can be deployed on or under the floor.  

Custom-printed conductive traces on the substrate act as 

electrodes and antennas for sensing. The sensing tiles are 

produced by printing a specific copper pattern onto the 

substrate. Each 0.3 m × 0.3 m sensing tile contains four 0.12 m 

× 0.12 m printed electrodes. For active sensing, one of the 

electrodes on each tile transmits a 5 V square wave signal to the 

other three that are set up as receivers. When the target’s body 

 
Fig. 9. Passive electric field sensing. The change in ambient electric field is measured by EPS and is used for localization (lateration in this example).  
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bridges any Tx-Rx pair, the receiver detects a signal whose 

amplitude is proportional to the capacitive coupling between 

that electrode pair. Depending on the distance between the 

target’s body and the transmit electrode, the capacitive coupling 

is either transmit (target very close to the transmitter) or shunt 

(target not close to the transmitter) mode. While no localization 

is performed, experiments conducted show that it is possible to 

correlate the observed signals with footsteps’ heel strikes and 

mid-swing. The system is also capable of passive electric field 

sensing with the electrodes sensing the powerline electric field 

which is coupled more strongly when a person stands on them. 

The change in amplitude depends on the contact area and 

proximity and therefore can be used to infer the location of the 

footstep. While no localization experiments are conducted, it is 

possible to differentiate among heel strikes, forefoot strikes and 

mid-swings between steps. 

Takiguchi et al. [174] measure the change in electric field to 

count the number of steps a subject made with 99.4% accuracy. 

Kurita [175] then shows that the waveforms produced as an 

individual walks are unique enough for gait recognition. Kurita 

is able to identify subjects with a false acceptance rate of 0.61% 

and a false rejection rate of 2.31%. Many other works have used 

electric field sensing for applications synergistic with 

positioning. For an overview of such works, the readers are 

referred to the survey by Grosse-Puppendahl et al. [34]. 

VI. CONCLUSION: CHALLENGES AND OPPORTUNITIES 

While unobtrusive passive localization using non-RF 

techniques is an active research field, there are many limitations 

and unsolved problems leading to exciting research 

opportunities. In this section we provide a brief overview of 

such challenges and opportunities. 

A. Sensor Fusion and Utilization of Multiple Technologies 

Localization is a multimodal, multisensory, multi-

technology problem and therefore, require a multidisciplinary 

approach. Our survey unfortunately shows a fractured research 

landscape with “siloed” approach. Among the works presented 

in this paper, LOCI [88] is the only system that utilizes multiple 

types of sensors. Even this lone example employs a thermopile 

array in conjunction with a PIR sensor and therefore is limited 

to only IR sensing. Sensor fusion can make localization systems 

more robust, eliminate blind spots, add redundancy and 

simplify implementation. An ideal IPS should use existing 

infrastructure of a building and not require the end user to 

deploy significant additional resources. Rather than installing a 

large number of bespoke sensors for a single mode solution, it 

is preferable to utilize pre-existing resources like Wi-Fi 

network, PIR motion detectors, structural health monitoring 

system etc. and then supplement with other sensors. Utilizing 

human routine and activities of daily living (ADL) should be 

considered. The only such example we found is the application 

of A-star algorithm assisted by an accessibility map (a heatmap 

constructed from the daily routines of the occupants) by Yang 

et al. [82]. Many localization systems require initialization and 

estimation of background condition or empty state. Pre-existing 

motion sensors and/or environmental sensors (e.g. CO2 sensors) 

can reliably indicate occupancy without having to resort to 

complex algorithms. 

B. Multiple Target Positioning & Tracking 

The majority of the reported solutions are able to localize 

only a single target. This is perfectly acceptable for many 

applications (e.g. AAL for an elderly individual living alone). 

Yet, the full potential of DFL can only be unlocked with robust 

multiple target localization which is often left as a future work 

by most researchers.   Table III lists the articles that have 

addressed the multi-target problem. Unfortunately, even these 

solutions have somewhat limited efficacy and only function for 

a small number of targets (up to a maximum of three among the 

works validated by experiments). The performance invariably 

degrades as soon as a second target is introduced. The multi-

target solutions are purpose built to work for a set small number 

of targets, within controlled settings and cannot be generalized 

for a larger target number. The issue is exacerbated by the fact 

that unobtrusive passive localization solutions are often 

opportunistic in nature. There is scope for adopting techniques 

from other disciplines. However, many inherent challenges like 

complex nature of the medium, dynamically changing 

environment, significant presence of noise and interference etc. 

pose unique difficulties. Therefore, a paradigm shift is required. 

Multimodal sensing and utilizing knowledge of ADL can be 

effective. While machine learning can be a potential solution, 

they require large training corpus. The time and labor cost of 

site surveying make data collection a significant challenge. 

Alternatives like crowdsourcing, data fabrication etc. inherently 

compromise data quality. 

C. Accuracy Evaluation and Reporting 

Localization error is commonly used to demonstrate 

accuracy and precision. But there is no universally adopted 

error metric. A wide range of accuracy metrics like median, 

mean, percentile, quartiles of localization errors, RMSE etc. 

have been used. Active localization discipline has several 

evaluation guidelines like  ISO/IEC 18305 [176] and EvAAL 

[177], which is used  by the Indoor Positioning and Indoor 

Navigation (IPIN) competition. There is also a set of procedures 

[178] used by the annual Microsoft Indoor Localization 

Competition. However, these methodologies have not been 

widely adopted for DFL and may not be even appropriate for 

evaluating passive positioning systems. A consistent testing 

procedure is also needed for reporting the performance of 

positioning systems. Unfortunately, wide variations in the size 

and other aspects of the test location, density of sensor 

deployment etc. make objective evaluation and comparison 

among various reported systems difficult. All of these issues are 

compounded when comparing across different technologies and 

sensing modalities. The accuracy metric should be regularized 

by the area of coverage, the number of sensors and the cost of 

implementation. Therefore, it is necessary to develop a 

universal testing scheme that will allow for an objective, 

“apple-to-apple” performance comparison.  
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D. Ground Truth Accuracy 

The localization error is computed as the difference between 

the position of the target estimated by the system and the actual 

position of the target or the ground truth (GT). Therefore, the 

integrity of the reported accuracy depends on the accuracy of 

the GT.  The GT must be an order of magnitude more accurate 

than the positioning system. Unfortunately, the majority of the 

published articles gloss over (e.g. a camera was used to 

determine the actual position of the target, the target walked 

along a predefined trajectory) or do not describe this critical 

step. As can be seen from Table IV, only a handful of the papers 

provide details about the ground truth systems utilized. There 

seems to be an implicit assumption that the ground truth is 

accurate. However, published report suggests that ground truth 

recording can be significantly inaccurate and a small error in 

ground truth measurement can have significant impact on the 

positioning evaluation [179]. Furthermore, the calibration of 

parametric models (e.g. distance vs signal attenuation) also 

requires accurate GT recording. Motion capture technology to 

capture GT is not economically feasible for most researchers. 

Options like gaming technology (e.g. Kinect, HTC Vive etc.) 

should be investigated for accurate and automated GT 

recording. An economically feasible system can also be useful 

for building ML training corpora. 

E. Evaluation in Real-World Environment 

The cost of human time and labor limits the collection of data 

required for calibration, model development, ML training etc. 

to a brief period and at a few, sometimes just a single, locations. 

However, this compromise means that the temporal and spatial 

variation and diversity are not adequately captured. Similar 

practical considerations constrain the performance evaluation 

of the positioning systems.  There are several public domain 

datasets in various ML repositories for wireless DFL. However, 

the techniques investigated in this article lack such resource, the 

onus of data collection is on the researchers. Yin et al. [77] 

collect PIR motion sensor data for a year in an apartment with 

two elderly occupants. But there is no concurrent recording of 

GT. Even when they collect data over a two week span with 

tagged occupants, they use a Bluetooth-based GT recording 

system which is not very accurate. There are some reported 

works where mock apartments were used (e.g. [82], [90], [120], 

[166]). There are also examples like the Smart Condo [71] and 

TABLE III: LIST of ARTICLES THAT IMPLEMENTED MULTI-TARGET TRACKING 

Research Sensing Method No of Targets Comments 

Liau et al. [119], 2008 Pressure (Load Cell) 2 0.2828 m of 85-percentile and 76.25-percentile for 1 and 2 targets. 

Hao et al. [65], 2009 Binary PIR 2 Mean error < 0.5 m. No single target performance is quoted. 

Rimminen et al. [156], 2009 Active Electric Field 2 Positioning accuracy not specified for 2 targets.1  

Lauterbach et al. [155], 2012 Active Electric Field 2 Positioning accuracy not specified. 

Lan et al. [125], 2017 Binary Pressure 3 Accuracy > 90% for up to 2 targets. ≈ 80% accuracy for 3 targets.2 

Yang et al. [85], 2019 Binary PIR 2 Mean error < 0.8 m. No single target performance is quoted. 

Qu et al. [110], 2019 Thermopile 3 Accuracy not quoted for multi-target. 

Shi et al. [142], 2019 Vibration 2 Mean error of 0.65 m. No single target performance is quoted. 

Fu et al. [169], 2019 Passive Electric Field 2 Positioning accuracy not specified for 2 target scenario. 

Tang & Mandal [170], 2019 Passive Electric Field 2 Mean error 0.104 m - 0.272 m for single and 0.2 m for multi-target.3 

Yang et al.  [87], 2020 Analog PIR 3 Mean errors of 0.43 m, 0.6 m and 0.82 m for 1, 2 and 3 targets. 

Narayana et al. [88], 2020 Analog PIR + Thermopile 3 80 percentile errors of 0.35 m and 0.88 m for 1 and 3 targets.4   

_______________________________________________________________________________________________ 
1For two target scenario 99% & 90% discrimination performance with gaps of 1.1 m & 0.78 m respectively. 
2Grid level positioning accuracy on a 3.6 m × 3.6 m testbed divided into a grid of 6 × 6. Needs to know the number of targets.  
3Single target scenario used 3 sensors. Multi-target scenario used 6 sensors in a much smaller test area. 
4For multi-target scenario, between 2 and 3 targets were within the FoV of the sensor. 

 

TABLE IV: LIST of ARTICLES THAT DISCUSS GROUND TRUTH RECORDING SYSTEM 

Research Ground Truth System 

Rimminen et al. [156], 2009 Customized system; subject wore a hat connected with encoder/pulley. 

Prance et al. [167], 2012 Microsoft lifecam VX-3000 USB camera; tracked a yellow dot on the subject’s shoulder. 

Yin et al. [77], 2016 Bluetooth Tag. 

Poston et al. [131], 2017 Custom designed system using PulsedLightmodel LIDAR-Litev2 with precision real-time clock. 

Yang et al. [82], 2018 Opti-track Motion Capture system.  

Fu et al. [169], 2019 Kinect V2 skeletal tracking. 

Faulkner et al. [161], 2020 HTC Vive with two Lighthouses, Tracker affixed to subject’s head. 

Tariq et al. [164], 2020 Marvelmind robotics ultrasound system; 4 ceiling mounted anchors tracking a tag affixed on a hat worn by the subject. 

Yang et al. [87], 2020 UWB-based localization system YCHIOT-MINI3S. 
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INRIA-Nancy smart apartment [122] that were specifically set 

up for long term data collection and evaluation. More such 

efforts are necessary and the lack of opensource data needs to 

be addressed. 

F. Practical Considerations 

A localization system has to be readily transferrable from one 

location to another without significant recalibration. In 

addition, the indoor environment is also quite dynamic and is 

inherently unsuited to techniques that require frequent and 

extensive calibration. A positioning system that requires 

significant recalibration whenever a furniture is moved, is not 

viable for real world usage. Therefore, there is a need for 

developing DFL system that can self-calibrate and adapt to 

changing scenarios. If necessary, even localization accuracy 

can be traded off for robustness and less reliance on calibration. 

Practical DFL systems need to position and track in real time. 

In contrast, the majority of the implemented prototypes use data 

collected during experiments for positioning at a later time. In 

many cases, the same data is divided into multiple sets with 

some used for calibration and training and the rest used for 

performance evaluation. It is difficult to ascertain whether these 

systems can perform adequately with a different set of sensor 

data, let alone in real time, at a different location in dynamically 

changing environment. Also, critical factors like computational 

complexity, energy consumptions etc. are absent or glossed 

over in most articles.  

Is accuracy the most important consideration while designing 

a localization system? Benchmarking in terms of accuracy is a 

staple in the published articles. More consideration needs to be 

given to practicality, robustness, ease of deployment and cost. 

Depending on the application, localization accuracy can be 

traded off with other performance parameters. As an example, 

if the goal is to raise alarm in case of a fall, the key accuracy 

metric should be the detection performance. A “room level” 

localization accuracy is perfectly acceptable if the system can 

detect every single fall event without false alarm.          

G. Privacy and Security 

Location (especially in real-time), daily routine etc. that are 

considered to be extremely private information are collected 

and stored by an IPS. Therefore, there is an inherent risk of 

privacy breach. Also, many applications are intended to be used 

for the elderly who are often more vulnerable to technology 

centric malicious activities. RF sensing based localization 

systems are vulnerable to jamming or spoofing [180, 181]. In 

passive localization systems, the target does not have a device 

on their person that can be compromised, or its signal 

intercepted. Therefore, they are more robust than active 

localization techniques. The techniques discussed in this article 

are also inherently more secure than their wireless counterparts. 

For example, Visible light or IR signals are confined within a 

small area and thus cannot be interfered with without being at 

close proximity. Floor based localization systems will require 

the malicious entity to have physical access to the premises.  

However, the majority of the techniques discussed in this article 

utilize/envision the deployment of the sensors as a WSN, 

potentially within an IoT framework and are therefore 

vulnerable to an attack to the network just like wireless 

localization techniques [182]. Marginal processing power and 

energy constraints make implementing robust security 

protocols challenging. Security and privacy are well 

investigated within the IoT discipline [183, 184]. That domain 

knowledge should be applied in the context of DFL for in situ 

evaluation and risk analysis which is currently lacking.   
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