Device Free Localization: A Review of Non-RF Techniques for Unobtrusive Indoor Positioning

Fakhrul Alam, Senior Member, IEEE, Nathaniel Faulkner, and Baden Parr

Abstract— Accurate, reliable indoor localization or positioning is the key enabler for location-based services. Indoor localization can be broadly classified into two distinct categories. Active localization entails tracking a tag attached to or carried by the target. Passive localization, on the other hand, involves positioning a device free or untagged target. While passive or device free localization is comparatively more difficult to achieve, it is the preferred option for many applications. Vision-based techniques can accurately localize an un-tagged target. However, privacy is a significant concern and thus have limited usability for many applications, especially in non-commercial and residential settings. Passive localization using RF or wireless sensing is an unobtrusive option and has seen extensive research efforts in recent years leading to a saturated research field but no consensus solution. Researchers have been investigating alternative solutions that can facilitate robust passive localization. The rapid proliferation of Internet of Things (IoT) is bringing ubiquitous networked devices and ambient sensors into modern buildings. The consequential pervasive ambient intelligence and signals of opportunity can enable unobtrusive device free positioning. This article presents a comprehensive review of non-RF solutions covering visible light-, infrared-, physical excitation- and electric field sensing-based techniques. Limitations of the state of the art and potential future research directions are also outlined.

Index Terms— Ambient assisted living (AAL), capacitive sensing, cyber physical systems, device free localization (DFL), electric field sensing, human computer interaction (HCI), human sensing, indoor localization, indoor positioning system (IPS), infrared (IR) sensing, internet of things (IoT), passive infrared (PIR), passive positioning, smart building, smart home, vibration based localization, visible light positioning (VLP).

I. INTRODUCTION

Indoor localization has been an active research topic for more than two decades. While outdoor positioning (e.g. GPS) is a mature technology, it does not work reliably inside buildings and there is no standardized solution for *indoor positioning system* (IPS) yet. *Location-based services* (LBS) within the built environment require robust and affordable positioning. The rapid adoption of Internet of Things (IoT) [1] is providing access to a ubiquitous network of devices and ambient sensors. This is opening up new opportunities for deploying IPS leveraging pre-existing infrastructure.

Indoor localization can be broadly categorized into active

F. Alam, N. Faulkner and B. Parr are all with the Department of Mechanical & Electrical Engineering (MEE), School of Food & Advanced Technology

and passive localization. Active localization is similar to GPSbased positioning where the target carries a device (or a tag). The positioning of the tag results in localizing the target. Active localization is useful for applications like asset tracking, navigation of mobile robots and many other use cases where the end user is carrying a device (e.g. a mobile phone). A multitude of options e.g. computer vision [2], light detection and ranging (LIDAR) [3], ultrasound [4], acoustic [5], geomagnetic fingerprinting [6], wireless or radio frequency (RF) [7], visible light [8], aroma fingerprinting [9] etc. have been investigated for active indoor localization. However, for many applications, relying on the target to carry a tag is not feasible. If the goal is to unobtrusively track an elderly, forgetful person, one cannot expect them to wear a tag (e.g. a bracelet) every day. The wearable device can also be forgotten or misplaced, get damaged or may require frequent battery changes. Having to carry a "tracking" device can be perceived as stigmatizing leading to reluctance to wear one. Passive localization, also known as device free localization (DFL), is the method of localizing an untagged target. It does not require the target to actively participate in the localization process by carrying a tag.

Passive localization is the key to providing *ambient assisted living* (AAL) in smart buildings. The application of DFL ranges from intrusion detection, fall detection and remote monitoring of the elderly, occupancy detection for energy efficient *heating, ventilation and air conditioning* (HVAC) and lighting, occupancy counting for emergency situations such as the evacuation of offices and public buildings, business analytics for retail applications, accessibility aids for visually impaired individuals etc.

Based on the sensing modality, passive localization can be divided into six major categories: vision-, RF-, visible light-, infrared-, physical excitation- and electric field sensing-based techniques. The physical excitation methods can be further classified into localization using pressure and vibration sensing. The electric field sensing techniques, sometimes termed capacitive sensing, include both active and passive sensing. The DFL classification is shown in Fig. 1. It should be noted that environmental sensors (e.g. temperature, relative humidity etc.) can accurately infer occupancy [10], but by themselves are not suitable for fine grained application like localization. Similarly, CO_2 sensors are commonly used for occupancy detection [11].

(SF&AT), Massey University, Auckland 0632, New Zealand (f.alam@massey.ac.nz, n.faulkner@massey.ac.nz, b.parr@massey.ac.nz).

This paragraph of the first footnote will contain the date on which you submitted your paper for review. This work was supported in part by the Massey University Doctoral Scholarship for N. Faulkner.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030174, IEEE Internet of Things Journal

Fig. 1. Classification of Device Free Localization (DFL) based on sensing modality. Vision- and RF-based techniques are not covered by this article.

However, their slow response time, sensitivity to environment, dependence on external factors (e.g. ventilation) and sparse deployment [12] make them unsuitable for localization.

Camera or vision-based techniques are widely used for surveillance [13], crowd counting [14] etc. Several studies have indicated that low-cost 3D cameras (e.g. Kinect) may be suitable for DFL purposes [15, 16]. However, vision-based techniques require favorable lighting conditions and have coverage blind spots due to occlusion. Most importantly, privacy concerns [17] make camera-based IPS in residential environments impractical. This is somewhat ironic given the ubiquitous presence of cameras embedded in smartphones, computing devices, gaming consoles etc. in modern households. We have therefore excluded vision-based localization techniques from this survey.

Localization based on RF sensing can potentially utilize the pre-existing wireless network of a building. It can also operate in "through walls" scenarios. DFL solutions employing customized hardware and the channel state information (CSI) metric can be quite accurate with median error reaching below half a meter [18, 19]. However, CSI is only available with Wi-Fi and thus preclude the majority of wireless technologies (e.g. Bluetooth, Zigbee etc.). Utilization of the universally available, received signal strength indicator (RSSI), lowers the accuracy and requires a significant number of wireless nodes to function [20]. This takes away the appeal of localization with preexisting infrastructure. Survey of the wireless DFL literature shows a vast discipline with a crowded research landscape leading to a high entry barrier for researchers. RF based passive positioning is also well catered for with many recent review articles. Interested readers are directed towards the survey papers and the articles within [18, 21-24]. RF or wireless DFL techniques have therefore been excluded from our article.

A. Contribution

There are many good review articles on indoor localization, published in reputable journals, as listed in Table I. However, the existing surveys either do not cover DFL or focus only on RF-based DFL or have been overtaken by significant technological and conceptual advances. For example, review articles [18, 21-24] consider only RF sensing based passive positioning. Articles [7, 25-28] consider various aspects of RF-based active localization techniques, predominantly focusing on localizing a target carrying a smartphone. Both active and passive positioning based on only RF sensing are discussed in

[29] whereas only active VLP is considered in [8, 30-33]. Passive positioning using electric field or capacitive sensing is addressed in [34]. However, this article only considers electric field sensing, and localization is merely one among a multitude of human computer interaction (HCI) applications covered. A comprehensive survey that covers passive positioning using a large variety of sensing techniques can be found in the 2010 article [35]. Given the fast-moving pace of localization research and the progress achieved in the last decade, this excellent article has unfortunately become dated. For example, the concept of VLP for passive localization was reported more than five years after this article was published. A 2017 survey covering several sensing techniques can be found in [36]. Nevertheless, this article only considers device-based or active localization. Another survey covering DFL was reported in 2019 [37]. However, this article discusses both active and passive positioning, does not consider indoor localization only and also does not cover many of the unobtrusive techniques available for DFL. Therefore, there is a clear need for a comprehensive review on passive indoor localization techniques that do not use RF sensing. Our article offers the following contributions:

- 1. An extensive overview of unobtrusive passive positioning facilitated by non-RF sensing techniques, addressing an identified gap in the literature.
- 2. An in depth and comprehensive discussion on the limitations of the state of the art leading to opportunities for future research.

Our review discusses works that report positioning (current location of the target) and/or tracking (successive locations of the target). Articles exploring synergistic applications like presence or occupancy detection, counting, pose identification, fall detection, target identification, gesture recognition etc. are not covered unless positioning and/or tracking were also explicitly investigated. We also do not describe basic concepts like ranging (estimating distance of the target from the sensor), positioning methods (e.g. lateration, angulation etc.), tracking algorithms (e.g. sequence estimators, Kalman or particle filters), classifiers etc. Many excellent tutorials and textbooks already cover these topics quite thoroughly.

The following keywords (by themselves and in combinations) were used to search for relevant articles: indoor localization, indoor positioning system, device free localization, DFL, passive positioning, visible light positioning, VLP, IR (or infrared) positioning/sensing, capacitive sensing,

TABLE I: RECENT SURVEY ARTICLES ON INDOOR LOCALIZATION

RESEARCH	SENSING TECHNIQUE	DFL?	COVERS NON-RF?
Teixeira et al. [35] ^a ,2010	Multiple	1	✓
Yang et al. [25], 2015	RF	×	×
He at al. [27], 2015	RF	×	×
Xiao et al. [29], 2016	RF	✓	×
Yassin et al. [7], 2016	RF	×	×
Luo et al. [30], 2017	Visible Light	×	✓
Brena et al. [36], 2017	Multiple	×	1
Grosse-Puppendahl et al. [34], 2017	Electric Field	✓	✓
Jang et al. [26], 2018	RF	×	×
Lashkari et al. [28], 2018	RF	×	×
Zhuang et al. [31], 2018	Visible Light	×	✓
Keskin et al. [32], 2018	Visible Light	×	✓
Ma et al. [18], 2019	RF	✓	×
Shit et al. [21], 2019	RF	✓	×
Zafari et al. [22], 2019	RF	✓	×
Denis et al. [23], 2019	RF	✓	×
Al-qaness et al. [24], 2019	RF	✓	×
Afzalan et al. [33], 2019	Visible Light	×	✓
Khelifi et al. [37] ^b , 2019	Multiple	✓	✓
Maheepala et al. [8], 2020	Visible Light	×	×
Alam et al. (This article)	Multiple	√	1

^a Dated article

^b Discusses both active and passive localization; majority of the non-obtrusive sensing techniques for DFL not covered

electric field sensing, PIR, thermopile sensing, vibration based localization/positioning, human sensing, ambient assisted living, AAL, location based service, LBS etc. Based on our familiarity with the discipline, we decided to start the search in the IEEE XPLORE and ACM digital library databases. Web of Science and Scopus databases were extensively used. Google Scholar (and its "cited by" feature) were also heavily utilized. Given the linkage of localization to biomedical applications, PubMed were also utilized for article search. Publisher websites e.g. Elsevier (ScienceDirect), Springer, Hindawi were also searched for articles along with the social networking site ResearchGate.

The rest of the paper is organized as follows. Section II gives a general overview of visible light-based passive positioning techniques. Section III introduces DFL using *infrared* (IR) sensing. Section IV discusses physical excitation-based passive localization techniques. Section V presents DFL based on electric field sensing. Section VI concludes the article with discussion on shortcomings of state of the art, open research questions and opportunities for future work. Table II lists all acronyms.

II. DFL WITH VISIBLE LIGHT SENSING

Visible light positioning (VLP) [38] has attracted considerable interest from the research community in recent years for active localization. VLP systems have the potential to leverage the existing lighting infrastructure and have been gaining popularity in part due to the rapid uptake of energy efficient *light emitting diode* (LED) technology for illumination. Researchers are also attracted by the synergy that

VLP has with the upcoming *visible light communication* (VLC) [39] and the ready access to light-sensors on ubiquitous smartphones. VLP also has some inherent advantages like security (signal confined within a relatively small locale), immunity from RF interference, absence of small-scale fading (the wavelength of visible light is much smaller compared to the surface area of a typical light-sensor) etc.

The success of visible light-based active localization has encouraged researchers to explore VLP for device free positioning. Passive VLP is a relatively new development with the earliest works reported in the literature in 2015 [40]. Some of the reported works demonstrate the potential of passive VLP with the aid of theoretical development and numerical simulations [41, 42]. However, prototype implementations with experimental results and localization performance [43, 44] are becoming more common. Passive VLP systems operate on the premise that the presence of the target alters the optical channel between light sources and light-sensors (e.g. photodiodes). These changes are often measured as variations to the light level or illuminance at a light-sensor present in the vicinity of the target (please see Fig. 2 for an example). The positioning can be inferred from the changes measured at a number of preinstalled sensors at judiciously selected locations (e.g. on the wall [43, 45], ceiling [46], floor [40] etc.).

A. Floor Inlaid with Light-Sensors

In this scenario, positioning is determined from the shadows cast by the target onto the floor. Li et al. [44] develops StarLight based on this concept. It uses bespoke VLC-enabled luminaires that are modulated for multiplexing purposes. A link between the light-sensor and a luminaire is considered to be shadowed

TARIE	IT+ I	IST OF ACPONYMS
LADLE		LIST OF AUKUNTIVIS

Acronym	Meaning
AAL	Ambient Assisted Living
ADL	Activities of Daily Living
ANN	Artificial Neural Network
AoA	Angle of Arrival
CNN	Convolutional Neural Network
CSI	Channel State Information
DFL	Device Free Localization
DNN	Deep Neural Network
DoF	Degrees of Freedom
EPS	Electric Potential Sensor
FoV	Field of View
FSR	Force Sensing Resistor
GRF	Ground Reaction Force
GT	Ground Truth
HCI	Human Computer Interaction
HMM	Hidden Markov Model
IoT	Internet of Things
IPS	Indoor Positioning System
IR	InfraRed
KNN	K Nearest Neighbor
LBS	Location Based Service
LED	Light Emitting Diode
LSTM	Long-Short Term Memory
MIMO	Multiple Input Multiple Output
MISO	Multiple Input Single Output
ML	Machine Learning
MLE	Maximum Likelihood Estimator
MLSE	Maximum Likelihood Sequence Estimator
MSE	Mean Square Error
PDA	Probabilistic Data Association
PIR	Passive Infrared
POF	Plastic Optical Fiber
RMSE	Root Mean Squared Error
RSS	Received Signal Strength
RSSI	Received Signal Strength Indicator
SNR	Signal to Noise Ratio
SVM	Support Vector Machine
SVR	Support Vector Regression
TDM	Time Division Multiplexing
TDoA	Time Difference of Arrival
ToA	Time of Arrival
ToF	Time of Flight
VLC	Visible Light Communication
VLP	Visible Light Positioning
WKNN	Weighted K Nearest Neighbor
WSN	Wireless Sensor Network

based on a predefined threshold. The prototype uses 20 light sensors along with twenty ceiling mounted LED luminaires within a 3.6 m \times 4.8 m area. A mean angular accuracy of 13.6⁰ while detecting the position of a human's body and four major limbs is achieved. It is able to track a mobile skeleton with mean and 95 percentile localization error of 0.04 m and 0.097 m respectively. StarLight is an extension of LiSense [40] that used 5 luminaires and 324 light-sensors within a 3 m \times 3 m testbed. While it was not evaluated for localization performance, the prototype was shown to attain a mean angular accuracy of 10⁰ for skeleton reconstruction.

LocaLight [47] is a prototype system that employs floorembedded light-sensors wirelessly powered by an RFID reader.

Fig. 2: Drop in ambient light level at three ISL29035 light-sensors for 6 different positions of a subject (one of the authors) within a 3.6 m \times 2 m space. The sensors are mounted on a wall 0.2 m from the boundary of the test-space.

In contrast to StarLight, standard luminaires are used. The shadows cast by a subject walking between the sensor and the luminaire are detected by the light-sensors. With a one-dimensional testbed of 3 luminaires and 5 sensor tags, Di Lascio et al. are able to locate a target within a range of 0.5 m.

Zhang et al. [41] also propose to use a grid of light-sensors embedded into the floor. LED luminaires, mounted on the ceiling, cast shadows of the target onto the sensors. A luminaire to sensor link is considered to be obstructed if the *received signal strength* (RSS) dips below a predefined threshold. The positioning is estimated using a geometric model that finds the intersection of the obstructed links. A luminaire to light-sensor link is implemented to measure parameters that are used for numerical simulation. The simulation study reports a median error of 0.08 m in an 8 m \times 8 m \times 4 m room with 4 LED luminaires, and 81 light sensors that were inlaid in a 0.5 m \times 0.5 m grid on the floor. The system can track multiple targets (up to 10) in theory and simulation using an adaptive multi-target positioning algorithm.

B. Ceiling Mounted Light-Sensors

These systems co-locate the light-sensors with the luminaires for monitoring (typically the RSS of) the reflected signal at the sensors. The reflected light and therefore the positioning performance depends on several factors like clothing color, walking direction, luminaire-sensor separation [48].

Eyelight [46] is a VLP system that can track human movement and detect room occupancy based on ceiling mounted sensors. Nguyen et al. use *time division multiplexing* (TDM) to create orthogonal links between bespoke LED luminaries and light-sensors. For a prototype implementation, they co-locate four light-sensors with narrow *field of view* (FoV) alongside a luminaire to create a transceiver node. In a

Fig. 3. Working principle of PIR motion detector.

45 m² room, Eyelight is able to achieve 0.89 m median positioning error using 6 ceiling mounted transceiver nodes. A two-stage localization algorithm based on predetermined threshold of RSS at the sensors is employed. The first stage performs coarse detection by identifying movement within the "coverage" of a node. The second stage achieves fine grained localization by identifying which link is broken. They also report 93.7% occupancy count accuracy and 93.78% activity classification accuracy using Adaboost, a common *machine learning* (ML) technique. Eyelight is the extension of an earlier work that was able to detect whether a door was open or closed through passive sensing [49].

Majeed and Hranilovic report the theoretical development of a passive VLP system [42] that utilizes the channel sounding approach. This an extension of their earlier work reported in [50]. Light sensors located on the ceiling alongside VLC enabled luminaires are proposed. A *maximum likelihood estimator* (MLE) achieved positioning using the changes caused by the target to the optical channel impulse response between the luminaires (transmitters) and the light-sensors (receivers). They suggest using *time of arrival* (ToA) and/or *time difference of arrival* (TDoA) methods to measure the channel impulse response. Their simulation results show a *root mean square error* (RMSE) of less than 0.1 m. They also derive the Cramer-Rao lower bound of the localization method.

Al-Hameed et al. suggest localization by adopting the concept of radar-like reflection of VLC [51]. They undertake the theoretical development of light detection and localization (LiDAL). They propose a multiple input multiple output (MIMO) system with a wide FoV single photodiode-based receiver and a multiple input single output (MISO) system using an imaging receiver. Simulation results show that in an otherwise empty 8 m \times 4 m \times 3 m room with 7 targets, the localization RMSE are 0.28 m and 0.16 m for 8 ceiling mounted MIMO and MISO systems respectively. The localization accuracy degrades once furniture is introduced in the simulation environment and the performance degrades further if the target moves in a nomadic, random pattern. A subsequent simulation study [52], shows that an artificial neural network (ANN) can learn the LiDAL induced reflection to improve detection and localization accuracy.

Yang et al. [53] employ reverse-biased LED luminaires as photodiodes (i.e. light-sensors) for occupancy sensing. While their CeilingSee system that utilized this novel design did not perform positioning, the sensing technique can potentially simplify the design of passive VLP systems.

C. Wall Mounted Light-Sensors

Localization is deduced from the change a target creates in the RSS of the ambient light measured by light-sensors embedded in the wall. Watchers on the Wall (WoW) [43] uses the change in RSS at wall-mounted light-sensors as a fingerprint and the weighted k-nearest neighbor (WKNN) classifier for positioning. The prototype system is able to track both a stationary and a moving target within a $2 \text{ m} \times 3.6 \text{ m}$ area using 14 wall-mounted light-sensors with median errors of 0.07 m and 0.12 m respectively. The work is an extension of Faulkner et al.'s proof of concept, Smart Wall, [54]. The same light-sensors are utilized by Konings et al. [45] to develop FieldLight. It uses the change in RSS caused by a roaming target to localize. However, rather than using a fingerprint approach, FieldLight localizes by modelling artificial potential fields [55] attached to the light-sensors that get triggered by the target when the measured RSS change exceeds a predefined threshold. Experiments conducted in three environments (7 m \times 8 m foyer, 4.8 m \times 9.6 m office and 7 m \times 4 m corridor) show median errors of 1.2 m, 0.84 m and 0.68 m respectively. In a "same environment" benchmarking at the office location, the FieldLight is found to be more accurate than a state of the art DFL system that uses RF sensing [56].

It should be noted that passive visible light-based techniques are also being investigated for gesture recognition than can be useful for HCI. We would steer the interested readers towards the recent works reported in the literature [57-61].

III. DFL WITH INFRARED SENSING

Passive IR (PIR) sensors are most commonly employed for localization based on IR sensing. A PIR sensor measures the IR radiation from a warm target (e.g. a human) within its FoV. These sensors are widely used as motion detectors for security alarms, automatic lighting etc. Therefore, pre-existing sensors can potentially be leveraged for localization purposes. In contrast to VLP systems, the IR-based systems can work under any illumination condition. It should be noted that the human target is the source of IR radiation. Therefore, while IR-based positioning is device free, the objective is to localize the source of the signal, not the "agent of change". One of the earliest examples of passive positioning using PIR sensors is reported in [62]. Lee et al. demonstrate the potential for positioning with the aid of simulation and some experimentation with 3 PIR sensors. There are many subsequent reported works [63-88] that have utilized PIR sensors for passive positioning.

Fig. 4. Localization of target within the intersection of the triggered PIR sensors.

The working of a typical PIR sensor is shown in Fig. 3. The two pyroelectric sensing elements are housed in their respective slots separated by a small gap. The elements convert the thermal energy received from the incident IR into electricity [89]. An IR emitting target entering the sensor's FoV activates the two sensing elements with a time delay, causing alternate positive and negative peaks. The elements are connected to the opposite inputs of a differential amplifier. Due to common mode rejection, only the contribution from the moving target is retained while that of the static ambience is cancelled. Therefore, PIR sensors have inherent difficulty with stationary targets. The sensor's Fresnel lens, which is constructed from a number of lenslets, focuses the IR emission on the sensing elements, helps control the number of zones, range, and angle of coverage [89] and plays a key role in positioning. By using custom designed Fresnel lenses along with masks and by organizing multiple sensors in array configuration, the detection regions can be made quite fine grained.

A. Localizing with Binary PIR Sensors

The basic principle of PIR sensor-based positioning is shown in Fig. 4. A sensor generates binary information indicating the presence/absence of a target within its detection zone. With the deployment of several sensors with overlapping coverage, the target can be localized within the intersection of the detection zones of the triggered sensors. Song et al. [63] report the development of such a region based positioning system. They deploy 6 ceiling mounted sensors in a 10.5 m \times 6.6 m room, dividing it into thirteen different regions. They demonstrate that it is possible to track a moving target and localize it accurately to the correct region, resulting in a maximum error of 5.25 m, as defined by the dimensions of the distinct regions. Most of the reported works using PIR sensor-based localization start with this basic concept.

Kim et al. [64] use ceiling mounted PIR sensors with overlapping coverage. They install 12 PIR sensors on the 2.5 m high ceiling of a 4 m \times 4 m test area. The earlier version of the system performed coarse localization. If only one sensor

produced an ON signal, the target is localized to be directly underneath sensor. If the outputs of two adjacent sensors were ON, the target's location was assumed to be at a point midway between the two sensors. If three or more sensors were ON, the target was positioned at the centroid of the location of the corresponding sensors. They improve the localization by defining three output classes for the PIR sensors: inside, boundary, and outside of the sensing area and then using a Bayesian classifier. They conduct three experiments with targets between 1.6-1.8 m tall, moving at speeds of 1.9 km/h (slow steps), 2.6 km/h (normal steps), and 4.0 km/h (rapid steps). While they do not report any explicit statistic about the localization error, accuracy of "about 0.8–0.9 m" and about "0.2–0.3 m" are quoted for the coarse and the refined algorithm.

Hao et al. [65] develop and implement a prototype system for tracking multiple targets. Their system utilizes sensor nodes made up of a 2×4 array of binary PIR sensors whose FoVs are controlled by Fresnel lens arrays and coded masks to produce "type I" and "type II" sensors respectively. Each node achieve a coverage of 144° with fourteen detection zones covering an average of 10° each. The prototype system consists of 4 nodes deployed in a 9 m \times 9 m room (each node at the mid-point of each side). The algorithm utilizes expectation-maximization scheme to determine the number of targets and positioning and then subsequent Bayesian tracking. Experimental results demonstrate simultaneous tracking of two targets in both "follow-up" and "crossover" scenarios with mean errors of less than 0.5 m. Their succeeding work with a distributive approach improves the scalability for large-scale deployment [66].

Jing et al. [69] report a proof of concept that tracks a walking target in a lobby for two scenarios. In their "non-overlapping" situation, 6 sensors are installed in a line on the ceiling. Two subjects, one at a time, follow a linear trace directly underneath the sensors. They estimate the walking speed (assumed constant) based on the time it takes for two consecutive sensors to turn on. Thus, assuming a linear trajectory, they are able to track the target. The mean error was found to be 0.394 m and 0.35 m for the two targets. In the "overlapping" situation, they use 12 sensors on a rectangular grid and the target walk along pre-defined trajectories (not just straight lines). With the aid of Kalman filter-based tracking, the mean error for different trajectories vary from 0.595 m to 0.926 m.

Sioutis and Tan [70] utilize space subdivision. Their sensor node consists of a cluster of 7 sensors housed in a 3D printed pod. They install 3 nodes on the 2.4 m high ceiling of a 5 m \times 4 m room. The room is thus divided into 700-850 unique areas, with each covered by a unique combination of sensors. Position is estimated by evaluating the state of the sensors. Four different trajectories connecting six points are traversed by the target, briefly pausing at some locations while walking past others. While the localization accuracy is not explicitly given, the authors surmise the positional error to be less than 0.5 m.

Yin et al. [77] track the room-level movement of two residents living in a smart home outfitted with five motion sensors. The data from the sensors are collected for a year while the two occupants followed their normal daily routines to develop naïve Bayes and *hidden Markov model* (HMM) location estimators. The performance of the developed algorithms is evaluated over a one-week period, when the participants wore Bluetooth tags to produce ground truth. The accuracy of both estimators is found to be approximately 73% in identifying the room the target is located in.

Luo et al. [79, 80] implement a system with 5 ceiling mounted sensor nodes placed on the four corners and the center of a 4 m \times 4 m square. Each node consists of 9 PIR sensors arranged in a 3×3 grid providing 40 fine-grained radial detection zones through the use of two types of masks doing radial and bearing segmentations. The region based target location is initially [79] refined by a Kalman filter and a Kalman smoother. They conduct experiments in an office environment with the target tracing four routes along a 3 m \times 3 m rectangle (one side, the perimeter, the diagonal and side-diagonal-sidediagonal) at various walking speeds. The average RMSE is about 0.6 m. In a follow up article [80], they apply a two-layer random forest classifier for both tracking and activity recognition. The mean accuracy while classifying among five common daily activities is reported to be better than 92%. The mean positioning error is 0.85 m.

Yang et al. [82] propose refining the coarse, zone based localization by utilizing an accessibility map and the A-star algorithm. Ten narrow FoV PIR sensors are installed in a 12 m \times 7.2 m mock apartment. During the calibration period, an accessibility map of the apartment is developed as a heatmap with 0.1 m \times 0.1 m grid based on the number of times the occupant visits the respective grid nodes during daily activities. The beginning of a route is taken as the start node of the A-star algorithm. At any given time, the current node is the location of the target. Eight candidate nodes are selected around the current node. The goal node is given by the grid point with the maximum heat score within the triggered sensor's detection zone. The target node is determined by a cost heuristic function. For two investigated routes, the mean localization error was found to be 0.21 m which is comparable to the accuracy of the method reported by Kim et al. [64] but with a significantly sparser sensor deployment density.

Yang et al. [85] employs a mesh network of PIR sensors for tracking multiple targets. The sensors are equipped with a special lens that allows each sensor to have 6 overlapping detection zones. Each zone is represented by a "detection line" and if a target is detected within a zone, it is assumed to be on the corresponding detection line. The intersections of all the activated detection lines are candidate target locations. This bearing crossing algorithm for target positioning is further refined through K-means clustering and then a Kalman filter is applied to track the moving target. Experimental results with 9 sensors produce mean tracking error of less than 0.8 m in a 10 m \times 10 m space with two human targets walking along several trajectories. This is an improvement of their earlier works reported in [72, 75, 76].

The localization performance of a PIR sensor-based system, like any others, depends on the placement of the sensors. Vlasenko et al. [71] and Fanti et al. [90] discuss the optimum placement of the PIR sensors and develop optimization algorithms that consider various practical constraints (e.g. number of sensors, obstacles like tall furniture etc.).

B. Localizing with Analog Voltage Output of PIR Sensors

The works discussed so far have used the PIR sensors primarily as binary sensors (which is the typical mode of operation of common motion sensors). However, a PIR sensor generates a voltage signal proportional to the change in IR radiation received by the pyroelectric sensors. This raw voltage level is then converted to a binary value by comparing it to a predefined threshold. It stands to reason that this hard thresholding leads to some loss of information. Therefore, several works [67, 68, 74, 78, 81, 83, 86, 87] have used the raw, analog output of the sensors for localization purposes. By exploiting the more information rich raw output from the sensors, these solutions can localize with a smaller number of sensors compared to the binary sensor-based systems. Many of these works create parametric models linking the distance of the target from the sensor and the raw output of the sensor.

Zappi et al. [67] extract features from the analog output of a pair of PIR sensors, termed as clusters, to track people. Each sensor of a cluster is mounted facing each other on opposite walls of a 2.5 m wide hallway. The space between the two sensors is divided into three regions: close to sensor 1 (within 0.8 m of sensor 1), middle (stretch of 0.9 m in the middle) and close to sensor 2 (within 0.8 m of sensor 2). In their experiments, they use 3 clusters along the hallway and record two hundred passages of each class. The target is localized to one of these three regions under a cluster using a classifier. They are able to detect direction of movement with 100% accuracy. The accuracy of correctly identifying the location of the target within the three classes for naïve Bayes, support vector machine (SVM) and K nearest neighbor (KNN) classifiers, are 83.49%, 87.5% and 95.35% respectively. This work builds on [91] where features were extracted from three sensors to estimate the direction of a target's movement and also to count the number of targets.

Monaci and Pandharipande [68] observe that the sign of the output voltage of a triggered PIR sensor can indicate the direction of the target's motion with respect to the sensor. They also find that when the detection regions of a pair of sensors partially overlap, it is possible to associate their corresponding signal levels to spatial zones. In their DFL system, each triggered sensor quantizes its analog output with two predefined thresholds. The ternary outputs from a pair of sensors with overlapped detection regions are then used to determine the occupancy within a fine-grained spatial zone. However, the localization is highly sensitive to the threshold levels and quantization steps. HMM is used to deal with the inaccuracies arising from incorrect thresholding by characterizing the transition of spatial zone occupancy, with each zone representing a discrete state. A maximum likelihood sequence estimator (MLSE) determines zone occupancy and tracks the target. The performance of the system for 1-D zoning and tracking is evaluated in a 6.4 m \times 3.7 m space with 2 sensors. For the four simple trajectories investigated, the system is able to locate and follow the target correctly across the zones.

Narayana et al. [74] argue that an array of multiple collocated PIR sensors is more robust to false/low detection compared to a network of distributed sensors. They construct a tower housing two sets of 4 sensors and use their analog outputs for localization. They develop a model relating the distance of the target from the sensor to its peak-to-peak output voltage. The distance of the target from a sensor is estimated through zoning. This ranging involves forming detection zones for each sensor in the array by having different gains for each to make them output maximum peak-to-peak voltage at different distances. Two towers are deployed on 1 m high tripods at 90^o angles with respect to each other at the ends of the hypotenuse of a rightangle triangle with legs of 4 m. The center of the coverage of each tower coincides with the respective legs. They report localization error of 0.2 m and 0.6 m for less than 5 m and 10 m ranges respectively in a large classroom with desks and other furniture. The system can also be configured to classify the height/width of the moving target.

Mukhopadhyay et al. [81] also use a calibrated model that relates the peak-to-peak output voltage of the sensor to its distance from the target. Of the two ranging techniques developed from the parametric model presented in their earlier work [89], the piecewise linear one is found to be more accurate. Ranging is followed by localization using multi-lateration and *support vector regression* (SVR). Their experimental setup consists of 4 sensors, that are time synchronized, deployed in a 7 m \times 7.5 m area. The localization RMSE for forty test points is found to be 0.65 m and 0.85 m for SVR and multi-lateration respectively. For the same setup, the RMSE of Narayana et al.'s method [74] is 1.2 m.

Liu et al. [86] use the "azimuth change" extracted from the raw output for positioning. They define the azimuth change as the absolute difference of the azimuth of the target with respect to a sensor at two locations. The extraction is based on modeling the PIR sensor as a second order dynamic system whose parameters depend on its physical properties. The obtained azimuth change information is used to build the observation model of a particle filter that tracks the moving target. Their prototype deployment has 4 sensors located at the corners of a 7 m \times 7 m open space. The target takes roundtrips along six predefined traces five times each. The mean localization errors are between 0.47 m (straight line trace) to 0.71 m ("horizontal snake-like curve") resulting in an overall mean error of 0.63 m. The 80-percentile error is less than a meter for all six cases. They investigate the impact of the number of sensors and find the mean localization errors to be 2.5 m, 1.7 m and 0.9 m for one, two and three sensors respectively. They also show that their system is more accurate in correctly localizing a target within a 1 m \times 1m grid compared to what Narayana et al. [74] achieved in a comparable scenario.

Yang et al. [87] argue that the relationship between the sensor's analog output and location of multiple targets is extremely complex and difficult to model. Therefore, they propose a *deep neural network* (DNN)-based approach for localizing multiple targets. They assume that the response of sensors at the presence of multiple targets can be approximated by the superposition of response to each target and additive

noise. Their DNN, termed PIRNet, therefore consists of two modules. The first module demixes the signal and determines the number of targets. The other module extracts features and localizes the individual targets. Rather than giving the raw sensor outputs to the NN directly, they use signal processing and data augmentation to preprocess the data. They achieve mean localization errors of 0.43 m, 0.6 m and 0.82 m for one, two and three simultaneous targets respectively in a 7 m \times 7 m open space covered by 4 sensors. The PIR sensors used for this work appears to be the same as those used by Liu et al. [86].

Li et al. [78] specifically address the inability of PIR sensors to handle a stationary target by making the sensors rotate to create relative motion between the sensor and the target. Their sensing module is a turntable tower equipped with 16 narrow FoV sensors and a DC-motor for rotation. They report an "accuracy" of 0.113 m while tracking a target following a pricewise linear "snake- like" trajectory in a test area of 6 m \times 6 m equipped with two sensing towers.

Wu et al. [83] utilized a semi-transparent rotating shutter, driven by a stepper motor, to create non-linear IR flow into a 2 \times 2 PIR sensor array to detect and localize a stationary target. The peak-to-peak output voltage and "intersections points", where the voltage signals between the two peaks meet with the half of the supply voltage, are used as the features for ML classifiers that perform zone level localization. The sensor node is ceiling mounted at a height of 2.8 m. It has 12 radial segments of coverage zones with radial distances of 1 m and 2 m and angular separation of 60° . The accuracy of the 4 supervised classifiers, namely the SVM, KNN, naïve Bayes and decision trees, in identifying the target within the correct zone are found to be within 97.47% to 98.89%. The duty cycle of the output is found to be an effective feature for detecting whether the target has a side facing or front/back direction. The relatively high power consumption of the stepper motor is a significant drawback of this scheme. A low power alternative using an electro-mechanical vibrator to drive the shutter is presented in a subsequent work [92].

C. Localizing with Thermopile Sensors

Thermopile sensors are typically constructed from seriesconnected thermocouples for sensing the IR radiation [93]. In contrast to PIR sensors, they measure the total amount of the incident IR flux, not its change. Therefore, they are able to detect a stationary target also. They are commonly used for contactless temperature measurement in microwave ovens, cooktops, air conditioners, thermometers etc. Passive human positioning based on thermopile sensing has been reported in the literature [94-101]. Other than Kemper and Hauschildt [94] who propose to use bespoke line sensors, the reported works utilize commercially available thermopile array/grid sensors (the 8×8 Panasonic Grid-Eye being the most popular choice) which are essentially very low-resolution thermal cameras. The basic concept of thermopile based sensing of a target is illustrated in Fig. 5. The thermal image is privacy preserving as it does not contain any identifiable information. The application of image processing techniques like background subtraction, noise reduction (through averaging or filtering) can improve the

(b)

Fig.5. (a). Illustration of localization with thermopile array. (b) Example of typical image processing of heat signature captured by a thermopile with one of the authors standing in front of a Panasonic Grid-Eye.

quality of the thermal image of the target followed by blob detection to infer the presence of the target. Parametric model (e.g. heat-distance relationship) calibration can also be applied for estimating depth or range.

Hevesi et al. [97] report tracking with "an accuracy in the range of 1 m" using a ceiling mounted 8×8 array. However, the emphasis of the work is more on activity recognition. Basu and Rowe [98] discuss the utilization of the IR image captured from a ceiling-mounted thermopile array for people counting (up to four) using SVM classification and identifying the direction of motion using normalized cross-correlation between the time series of pair of pixels. While they do not perform explicit positioning, the image processing techniques utilized for feature extraction can be quite useful for localization. Thermopile sensors have also been used for occupancy detection [102], fall detection [103], activity recognition [104], respiratory flow monitoring [105], pose detection [106] etc.

Kuki et al. [95] track human movement by capturing the thermal image with a ceiling mounted 4×4 array. The pixels associated with the target are detected after background removal using three "if-then" fuzzy rules on sensed temperature. The target pixels are then used to define the target area by blob detection. The polygon that connects the centroid of each blob is the target trajectory. For their experimental setup, the sensor is installed 2.73 m off the floor. A 1.58 m \times 1.58 m area underneath the sensor is the monitored zone. They track a target performing fifteen different motion patterns that

include walking at various speeds, crawling etc. within 0.396 m \times 0.396 m zones. They report a mean positioning error of 0.215 m. They later extend the work to count people [107] and coarse positioning of multiple targets [108].

H. M. Ng [96] localizes using a network of wall-mounted thermopile sensors. He assumes that the output of a thermopile is related to the amount of incident IR. Therefore, if the temperature and area of the sensed target are constants, the distance of the target from the sensor can be estimated from the detected temperature. Temperature-distance calibration curves are derived for front and side-facing poses. Five sensors are installed on two perpendicular walls of a 4.6 m \times 2.7 m room (three on the longer wall or along the vertical axis with the remaining two along the horizontal axis). The positioning along each dimension is achieved by finding the distance corresponding to the highest temperature between the sensors along that axis. The positioning accuracy, presumably mean error, for a simple horizontal and a vertical trajectory is found to be within 0.5 m. He also accurately identifies common human activities such as walking past a doorway, lingering outside or entering a room.

Chen and Ma [99] localize by extracting the *angle of arrival* (AoA) information from 2 wall-mounted, time synchronized 16×4 sensors. Noise reduction through multi-frame averaging and then background subtraction are utilized to detect the target from the IR image. The position derived from AoA is further refined using a quadratic regression model. They monitor a 3 m $\times 2.35$ m area with 2 sensors that are 3.3 m apart, installed at a height of 1.2 m. The mean positioning error for a "snake-like" trajectory is 0.1339 m. They also implement fall detection using KNN classifier.

Shetty et al. [109] utilize an 8×8 array for target detection with Kalman filter-based tracking. They use bicubic interpolation to enhance the thermal image and then perform background subtraction. The extracted foreground is then denoised with a Gaussian filter. This is followed by binary thresholding and blob detection. The centroid of the blob, representing the target position, is tracked using the Kalman filter. While they do some initial testing to demonstrate a proof of concept, no localization experiments are conducted, and no positioning accuracy is reported.

Chen et al. [100] classify target facing direction using an 8×8 sensor. The raw IR images from the array are processed by applying background subtraction followed by linear interpolation and thresholding to create 32×32 binary matrices. They utilize *convolutional neural network* (CNN) to extract features from these binary matrices to train an SVM classifier. By integrating the array with a *time of flight* (ToF) distance sensor on a rotational target tracking platform, they are able to achieve 0.19 m localization RMSE. The experiments are conducted within a 1.2 m \times 2.4 m rectangular area. The platform is placed in the middle of one of the longer sides and the target walks back and forth along the remaining three sides.

Kowlaski et al. [101] utilize wall-mounted sensor clusters consisting of three 8×8 thermopile arrays mounted in a custom-designed 3D printed case. They employ two clusters to

cover a 2 m \times 2.5 m area divided into twenty 0.5 m \times 0.5 m cells. The sensor clusters are attached to the middle of two perpendicular walls at a height of approximately 1.5 m. SVM is used as the classifier to position the target within a cell based on the feature vector consisting of the temperature values registered at the sensor clusters. They collect 2128 samples and train the classifier with 75% of this data. For the remaining 25% data, the accuracy of the classification for positioning within a single cell and within a neighborhood of four cells are 73.1% and 93% respectively.

Qu et al. [110] form temperature and shape signatures (to eliminate non-human heat sources) from the IR image captured from a wall-mounted 8×8 array. Interpolation is used to create a 71×71 image which is smoothened or denoised by Gaussian filtering. Adaptive thresholding, making all pixels lower than the threshold to be equal to the threshold, is then used to eliminate the background. The pixel with the highest temperature corresponds to the relative location of the target in the sensor array which is then converted to actual location by using a parametric model. The system tracks target using a Kalman filter. In a 4 m \times 4 m area with the target walking along the diagonal, the mean localization error is found to be 0.07 m. The system can track multiple targets (up to 3) simultaneously by data association through "energy characteristics". This exploits the fact that humans having different shapes and clothes produce different heat signatures which cannot change markedly within the detection period. While the accuracy degrades, the system can track all three targets even for crosswalking where the targets come together and then diverge.

Narayana et al. [88] propose a fusion of PIR and thermopile sensors for positioning. Their earlier work [74] is leveraged and improved upon to develop a parametric model linking the analog output of the PIR sensor to the target's distance, speed and direction. The PIR sensor acts a depth sensor providing an estimate of the range between the sensor and the target. Once a presence is detected by the PIR sensor, a collocated 32×24 thermopile array captures the thermal image to provide an estimate of the target's location in the other two dimensions: across the FoV cone axis and the height of the object. Thus, a single sensor node (termed FOCI) can localize the target by using a KNN classifier to match the pair of information from the two sensors. It should be noted that background subtraction and Gaussian filtering along with interpolation are used to improve the thermal image. For their experimental setup, a single FOCI sensor is mounted at a height of 1.2 m to monitor a 9 m \times 8 m area. Training and calibration data are collected from twenty different individuals wearing different types of clothing on different days and walking at different speeds. For testing, ten targets (one at a time) walk randomly at various speeds. Twenty recordings for each target are taken. The median and 80-percentile error are 0.22 m and 0.35 m respectively. For multi-target tracking with two and three subjects, 82-percentile error of 0.88 m is achieved.

We also noted a DFL system that employs IR cameras capturing the reflection of signal transmitted by IR LEDs mounted on those cameras from retroreflectors fixed on the

Fig. 6. Positioning on a pressure sensitive floor by localizing the center of pressure. Pressure sensors (e.g. load-cells) are embedded underneath floor panels.

walls [111]. The positioning is inferred from the occlusion created by the target passing between the camera and the reflectors. Santo et al. report a mean localization error of approximately 0.3 m with 2 cameras deployed in 3 experimental setups in rooms with dimension of $3 \text{ m} \times 3 \text{ m}$, $4 \text{ m} \times 5.5 \text{ m}$ and $4 \text{ m} \times 7 \text{ m}$ respectively. While the system is technically privacy preserving (no image of the target is captured), it may not be perceived as such. In fact, the authors themselves mention the need for investigating its acceptability since the IR camera looks similar to a normal RGB camera.

IV. DFL BY LOCALIZING PHYSICAL EXCITATION SOURCE

Whenever a person moves around indoors, they contact the floor with each step that they take. Each footstep can be thought of as the source of a physical excitation. The positioning of the person can be achieved by locating the source of the excitation i.e. the footstep. Therefore, while the target is untagged, the (footstep) positioning is equivalent to localization of a source.

A. Pressure Sensitive Floor

Floor embedded with piezo-electric/resistive pressure sensors is one of the oldest reported techniques for locating and identifying people. Such pressure sensitive floors are able to sense the force at which a subject's foot hits the ground and can identify individuals by analyzing the *ground reaction force* (GRF) [112]. Pressure sensitive floors can be constructed from small panels supported by load cells as shown in Fig. 6. Early examples of such floors are the ORL Active Floor [113] and the Smart Floor [114]. Other alternatives include *force sensing resistor* (FSR) [115], grid of piezo electric wires [116], electromechanical film [117], piezoresistive carbon granules mixed with rubber [118], etc.

Liau et al. [119] construct a floor from 0.6 m \times 0.6 m blocks with embedded load cell in the middle. Twenty-five blocks separated by 0.2 m are installed underneath a regular wooden floor in a 5 \times 5 grid. They utilize a Kalman filter-based algorithm, *probabilistic data association* (PDA), to track the target. This is augmented with LeZi-Update to handle crosswalking for the multi-target scenario. Personal profiles for individual users are created based on their respective GRF. The 85-percentile error while tracking a single target tracing the perimeter of a 2.4 m \times 1.6 m rectangle is 0.2828 m. While

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3030174, IEEE Internet of Things Journal

Fig. 7. Vibration based positioning. The target is localized at the intersection of TDoA hyperbolas.

tracking two targets with significantly dissimilar weights with one following the rectangular path while the other walking randomly around a small area, the localization error of 0.2828 m is observed at the 76.25-percentile. Even though they track two targets moving on linear cross-walking trajectories, localization accuracy for that scenario is not reported.

Andries et al. [120] install a floor constructed from a network of 104 tiles in a mock apartment. Each 0.6 m \times 0.6 m tile has load-cells underneath its four corners. The data acquisition is done using the "smart tiles platform" introduced in [121]. They apply computer vision techniques by treating the load values read from the floor analogous to the light-intensity bitmap image generated by the image sensor of a camera respectively. Blob detection, where the blob is created by the target exerting force at the load sensors, is performed followed by localization and tracking of the blob. Background subtraction is applied to remove the contribution from other sources like furniture etc. They initially track a wheeled robot doing a figure of eight loop (approximately 2.5 m \times 1 m) and obtain a mean localization error of 0.08 m. For a human target, the center of pressure of the blob is taken as the position of the target. They report a mean error of 0.13 m for a human going through a "morning routine scenario". Large errors (1.5 m-2 m) occur when the target is close to heavy furniture. For a twotarget "receiving a visitor" scenario, the mean error is 0.2 m. In this situation, the large errors occur when the two individuals are in close proximity, occupying a contiguous space in terms of tiles. Daher et al. [122] used the same floor for activity and fall detection. Data from an accelerometer, located at the center of each tile, is fused to improve the fall detection performance.

Al-Naimi and Wong [123] use sensing units constructed of 16 FSR sensors arranged in a 4×4 array within a 0.5 m \times 0.5 m plywood. The testbed has sixteen sensing units covering a 2 m \times 2 m space. The localization algorithm first segments each footstep and identifies the cluster of contiguous sensors (maximum of six due to the geometry of the layout and the size of a human foot) activated by each footstep. Each sensor is triggered at a slightly different time depending on when they come in contact with the foot. A pattern signal for each footstep is generated by combining the time delayed voltage signals. The centroid of this pattern represents the footstep's centroid. The mean footstep localization error for a single target on straight and curved trajectories is 0.0767 m based on one hundred and twenty footstep data collected for each case during experiments.

Murakita et al. [124] uses $0.18 \text{ m} \times 0.18 \text{ m}$ binary pressure sensors to cover a 37 m² testbed. They consider the output of the sensors forming binary images. A particle filter is applied with both a linear Gaussian and a non-linear bipedal prediction model for tracking. The bipedal model is more accurate but is found to have more difficulty discriminating between multiple subjects. Ten targets walked a marked 30 m test course three times each. A mean error of 0.2 m is achieved with a maximum error of 0.59 m. The system can discriminate between two targets at 90% accuracy if they remain at least 0.8 m apart.

Lan et al. [125] utilizes compressive sensing with multilayer binary pressure sensors where each layer of the pressure sensors is constructed from sponges sandwiched by two tin foils. The sponge layers have holes through which the two foil layers can come into contact when pressed by a subject's footstep creating an electrical connection generating a one-bit output "1" for the corresponding layer. The observation space is divided into multiple zones with each being encoded with a binary code. Target detection and localization are treated as encoding and decoding respectively. Space encoding scheme based on low density parity check matrices is utilized with the decoding being performed using Bayesian inference. The testbed consists of 3.6 $m \times 3.6$ m area covered by six-layer binary pressure sensors organized in 36 zones as a 6×6 grid. They perform multiple experiments with 1-4 targets and accomplish grid level localization in real time. The localization accuracy is better than 80% for up to 3 targets and it comes down to 50% for 4 targets indicating the need for a denser sensor grid. This a continuation of their earlier work [126] where they developed the detection and the localization algorithms.

Many works (e.g. [113-118, 127-129]) use pressure-based flooring similar to the ones discussed in this section for activity detection, fall detection and target identification. "Intelligent carpet" using *plastic optical fiber* (POF) sensors [130] has also been proposed for footstep imaging. If used in an appropriate manner, these systems can potentially be used for localization.

B. Vibration Sensing

The basic idea of vibration-based localization is illustrated in Fig. 7. The floor or structural vibrations induced by the target's footsteps are measured with geophones or seismic sensors. The footstep event is identified apart from other excitation events (e.g. fall of a chair), typically with a classifier. With a network of distributed sensors registering the vibration signals resulting from the same footstep at different times, a TDoA algorithm can localize the excitation source, the footstep. It should be noted that since the origin time of the footstep is not known a priori, ToA cannot be used for localization purposes. Also, vibration waves propagating through a structure like floor experience exponential attenuation with distance. Therefore, the error of RSS-based range estimation has an exponential relationship with distance. In contrast, TDoA ranging error is linearly proportional to arrival time estimation making it more suitable for this scenario [131]. Vibration based localization has synergy with and can build on the techniques used for active source localization within other bodies of research. However, the floor is a complex and heterogenous propagation medium compared to air, water and free-space RF. One of the advantages of vibration based DFL is that it may be able to leverage pre-existing sensors that are part of the structural health monitoring system of the building [132].

Floc [133] is a footstep localization prototype that utilizes pwave geophone sensors. Chen et al. find that the ambient noise mainly manifests at lower than 63 Hz and they remove that with a high-pass Butterworth filter. A calibrated mathematical model is developed to detect footsteps with a reported 97% accuracy. After detection, the corresponding footstep is localized using TDoA. A proof of concept experiment is conducted in a 6 m \times 8 m cluttered office. Three geophones are installed on the floor at the vertices of a right-angle triangle (legs of 4 m and 3 m). Three subjects (one at a time) take three steps within this triangular space twenty times each. A mean localization error of 0.07 m is achieved.

Bahroun et al. [134] theorize and experimentally demonstrate that the propagation velocity of the vibration wave in a bounded medium like a concrete slab is a function of the source-sensor separation. This makes range estimation, therefore algorithms like TDoA, subject to measurement error. They propose localization using the sign of TDoA instead. This capitalizes on the observation that even with varying propagation velocity, the order at which the vibration waves arrive at the sensors does not change; further distance still results in higher propagation time. The sign of the arrival time between a pair of sensors is used to define a zone of possible location of the footstep. If the space between a pair of sensors is divided by a perpendicular bisector of the line joining the pair, the source will be on the side of the sensor that receives the vibration signal earlier (positive sign of TDoA). Multiple such zones created from multiple pairs of sensors and known boundaries (like walls) localize the target. They conduct proof of concept experiment with 9 seismic sensors arranged as a 3×3 grid in a 3.6 m \times 5.4 m space on a 0.2 m concrete slab covered by a tiled floor. For seven footsteps, they report positional errors between 0.29 m and 0.68 m.

Mirshekari et al. [135] use an SVM classifier to identify the footstep event followed by localization utilizing TDoA. Since a vibration wave is dispersive in nature having multiple frequency components with different velocities, the algorithm uses signal decomposition to group components with similar propagation characteristics. Since the floor is a heterogenous medium, the propagation velocities also depend on the location. An adaptive multi-lateration based on heuristics mitigates this by constraining the search space. The algorithm requires a minimum of 4 sensors for localization. Experiments are conducted in three different locations with three individuals (one at a time) walking multiple traces at various walking speeds within a 5 m \times 4 m space. They conclude that when the footstep is within a polygon formed by the sensors, the localization accuracy improves. An overall median localization error of 0.38 m is achieved. The localization accuracy can be traded off with the number of deployed sensors. Further refinement is proposed in [136] by using a model transfer approach to improve footstep detection. They project the data into a feature space in which the structural effects are minimized for more robust detection. This research group has published several other synergistic works that characterize the vibration wave propagation [137], perform occupancy detection [138], fall detection [139], target identification [140], occupancy traffic estimation [141] etc.

Shi et al. [142] from the same research group report multiple target localization of three concurrent walkers. Since footsteps from multiple targets are not synchronized, only partial overlaps occur between vibration signals induced by concurrent walkers. Furthermore, stepping frequencies and walking patterns vary among individuals. Therefore, the heel strike timing for concurrent walkers may not be also completely overlapping. The footstep event detection is done with the raw vibration signal. They decompose the detected vibration signal using wavelet transformation, identify the number of targets and extract the onset of footstep signal (i.e. the heel strike). Each target is then localized independent of each other using TDoA. Experimental setup uses four geophones monitoring a 3 $m \times 4$ m area. The localization is performed for three scenarios: cross-walk, side-by-side and follow (three steps away) with a mean localization error of 0.65 m.

Poston et al. [131] propose a robust localization algorithm that takes the distortion experienced by the vibration wave propagating within a building's structure into consideration. In contrast to other works, they use pre-existing sensors which are already embedded as part of the building's structural dynamics instrumentation. They classify two types of footsteps. The compression case when the footstep is directly over one of the sensors, the vibration waves experience little distortion; the location of the footstep is essentially that of the sensor. The rest of the footsteps are classified as the general case with wave distortion and the localization is performed using TDoA after footstep detection. The footstep detection is achieved with a matched filter where the impulse response of the filter is constructed from representative excitation signals collected during the calibration process. Experiments are performed in a 25.5 m \times 2 m corridor and a 15.8 m \times 17.2 m lobby of a building. Both areas had 12 sensors. The localization RMSE with the target walking along linear trajectories are 0.6 m and 0.8 m respectively. This work is an extension of the preliminary efforts reported in [143]. Poston also extends the work [144] to account for two targets simultaneously by applying Kalman filtering and multiple hypothesis tracking.

Alajlouni and Tarazaga [145] develop a computationally simple algorithm based on heuristics and utilize the fact that sensors nearer to the footstep register higher energy compared to the distant ones. Simple peak detection algorithm is applied for footstep detection. The energy received at the sensor exceeding a predefined threshold and within a predefined time window ending at the peak of the detected vibration signal is computed. The footstep's position is the weighted average of the sensors' locations with the corresponding measured energy as the weight. The work is an extension of the concept reported in [146]. The testing is done in the same instrumented building that Poston et al. [131] experimented in. With the target following a linear trajectory back and forth along a 13 m \times 2 m corridor, the 80-percentile localization error is 0.7 m.

Vibration based localization is highly dependent on correctly identifying footstep-impact events from similar spurious events like objects falling. Low SNR due to ambient noise can also make the detection of footstep-induced floor-vibration signatures difficult. Drira et al. [147] develop an accurate classifier to identify footstep-impact event. After analyzing the event signals within a range of 10-260 Hz, they conclude that combining information from multiple frequency components is the key to accurate event identification. Also, using both low and high frequency components increase the accuracy of the classifiers. Another relevant study conducted by Lam et al. [148] suggests focusing on the vibration signal components around natural frequencies of the structure to increase the SNR. Vibration based localization is also impacted by varying rigidities of structural floors, obstructions, variation of the signal due to shoe types etc. Drira et al. [149] propose using physics-based models in the interpretation of vibration measurements as an effective way to minimize these effects. While no localization is performed in these research works, the findings can help design more robust localization techniques.

V. DFL WITH ELECTRIC FIELD SENSING

Electric Field sensing involves measuring the change in the capacitive coupling between the target and the objects present in the environment. In the literature, when a transmitter actively generates an electric field, with the target changing the field, it is commonly referred to as capacitive sensing. In contrast, the transmitter-less sensing that measures changes in the ambient electric field by the target's presence and movement, is commonly termed as passive electric field sensing.

A. Localization with Active Sensing

There are three sensing modes for active capacitive sensing as explained by Zimmerman et al. [150] and Smith et al. [151]: transmit mode, shunt mode and loading mode as shown in Fig. 8. In transmit mode the signal from a transmitter is coupled by the subject's body, which then becomes an electric field emitter. This only happens when the target is very close to the transmitter and the body effectively becomes an extension of the transmitter. In shunt mode, the target's body conducts a portion of the signal to ground. The remainder of the signal which is not blocked by the target can then be measured at the receiver. This happens when the target is not close to either electrode. In loading mode, there is no receiver and the environment effectively forms the second plate of the capacitor to ground (Fig. 8). Loading mode capacitive sensing underpins the popular touchscreen technology and is also the most common mode of active sensing for localization.

Savio and Ludwig [152] develop the Smart Carpet, one of the earlier capacitive systems, using fabric with conductive wires sewn into it. The wires are formed into serpentine shapes to construct 0.15 m \times 0.15 m panels that are used as the plate of a capacitor in loading mode. When a target's foot is in proximity to a panel, the measured capacitance increases. Predetermined thresholding is used to identify which plates have been activated by the target's footstep. Three different techniques are used to cluster the groups of squares associated with a single foot: simple heuristics, MLE and rank regression. The midpoints between successive footprints are used to estimate the trajectory. They implement a 2.4 m \times 2 m prototype using 180 panels. Twenty-four test subjects (including children and adults of both genders) walked on multiple trajectories. The mean square error (MSE) of localization are between 0.0187 m (line) to 0.431 m (C-shape) for various trajectories. Lauterbach et al. [153, 154] develop another similar system, SensFloor, which uses conductive triangles embedded in a textile with a density of 32 triangles per m². As with the Smart Carpet, these triangles form the plate of the capacitor in loading mode. The floor is later used with hip mounted accelerometers to identify individuals [155]. A Kalman filter is used to improve the tracking of people around the room and implement multiple subject tracking. However, the accuracy of the system is not quantified.

Rimminen et al. [156] are similarly able to track occupants in a room with conductive panels underneath the floor forming one plate of a capacitor whilst sensing in the loading mode. A floor of a 4 m \times 4.5 m room is embedded with 0.25 m \times 0.5 m sensor panels. A mean positioning error of 0.21 m is achieved while tracking a moving target. Multiple walking speeds are investigated, with smaller positioning error at lower speeds. As a person walks, the footsteps alternate from side to side, deviating from the subject's actual course. A Kalman filter is shown to perform better than simply tracking the centroids of successive footsteps. A particle filter is used for multiple target tracking. Two targets can be individually separated with 90% accuracy if they are more than 0.8 m apart and with 99% accuracy if they are more than 1.1 m apart. This is an improvement of their earlier work [157] where they demonstrated that the observed signal pattern is different when a person is lying on it as opposed to standing on it. They also implement fall detection in a later work [158] by classifying the poses based upon their contact area amongst other metrics.

CapFloor [159] uses two sets of parallel wires orthogonal to each other with each wire forming a capacitive plate in loading mode. A person walking above alters the measured capacitance in any wire underneath. Since there are two sets of wires in orthogonal directions, a person is above at least one wire in each direction, with the intersection point of these wires being the

Fig. 8. Capacitive coupling and three modes of capacitive (active electric field) sensing.

target's estimated position. Braun et al. state the positioning error to be "in the range of" 0.5 m.

Sensing Floor, presented in [160], employs thirty-six 0.09 m \times 0.09 m copper foil squares, spaced 0.01 m apart, embedded underneath 0.6 m \times 0.6 m MDF panels. As a foot comes in proximity to the floor, the loading mode capacitance between the floor and the foot is determined by the overlap of the foot and the panel underneath. The measured capacitance forms a low-resolution image that is interpolated to improve the resolution. Subsequent binary thresholding followed by blob detection results in footstep detection. Faulkner et al. estimate median position error of 0.0135 m and a median angular error of 10.4⁰ for stationary foot placement. This work is extended [161] to extract various poses for a target lying on the floor and tracking a moving target. The median localization error for a single target moving along a testbed of 2.4 m \times 1.2 m over twenty two trajectories is 0.022 m.

Akhmareh et al. [162] use 4 loading mode capacitive sensors affixed to the walls. Each sensor, constructed from small copper clad tiles ($0.08 \text{ m} \times 0.08 \text{ m}$), is positioned at the center of each wall at a height of 1.15 m from the floor. The tiles are connected to a 555 timer so that the change in capacitance causes a change in output frequency. The system uses fingerprinting to match live samples taken to the nearest grid point. They report 0.2 m mean localization error for static positioning in a 3 m × 3 m room that also had interference sources such as a fridge and metal cupboard in it. The work is further extended by Tariq et al. [163] where they apply multiple ML classifiers and the Random Forest improves accuracy to 0.05 m. In a later work [164], they improve the sensors to enable mobile target tracking with NN. They report mean error of 0.307 m and 0.326 m for 1D-CNN and *Long-Short Term Memory* (LSTM) respectively.

All the works discussed in this section so far have used loading mode capacitive sensing. TileTrack [165], on the other hand, uses transmit mode sensing. An additional electrode is placed in the room to receive a 32 kHz square wave transmitted from 0.6 m \times 0.6 m floor tiles. A target between the electrode and the floor tile changes the amplitude of the square wave. The 80-percentile error for a stationary target is 0.1 m with the largest error of 0.143 m. If a moving target's feet do not fall across multiple tiles, they can only be positioned at the center of that tile. Several different paths are tested with a maximum error of 0.407 m. This work is further extended in [166] where the floor of a 69 m² apartment was fitted with either 0.3 m \times 0.3 m or 0.6 m \times 0.6 m squares. Only the squares close to the target's previous position are tested. If the target "disappears", the whole apartment is searched until they are found again. If the target enters an untracked room such as the bathroom or the balcony, they are reset to be at the center of that room until they reappear. Tracking is initiated as a person enters (appears) through the front door and is removed if they exit (disappear) by the front door. Some furniture, the sofa and the bed, have contact sensors to further aid with the tracking. They also perform a fourteen-day living test with an individual living in the apartment as normally as possible. Actions are annotated with a voice recorder so that they can be matched up with the data when it is processed. The 90-percentile localization error is found to be 0.07/0.11 m for standing on 0.3/0.6 m tiles. For moving target, the 90-percentile error is found to be 0.17/0.33m on 0.3/0.6 m tiles.

B. Localization with Passive Electric Field Sensing

Passive electric field sensing is opportunistic in nature and does not require a transmitted signal. Electric field emitted by the mains (50/60 Hz) powerline and the static electric field between the ground and the ionosphere present themselves as signals of opportunity. These electric fields are perturbed by the movement of an earthed body i.e. the target [167] and present an opportunity similar to shunt mode active sensing. Also, as a person walks on the floor, static charge and resulting electric potential build up due to the triboelectric effect. The movement of the charged target also causes change in the electric field. Positioning is determined by measuring these changes in the ambient electric field caused by the target. Figure 9 shows a

Target is charged/grounded conductor

Fig. 9. Passive electric field sensing. The change in ambient electric field is measured by EPS and is used for localization (lateration in this example).

typical method of localization using passive electric field sensing.

Prance et al. [167] measure the change in the AC powerline electric field with the aid of *electric potential sensors* (EPS) for target localization. Through experimental data collection, they demonstrate that the electric field's amplitude reduction caused by the target is proportional to the inverse of its distance from the sensor. By measuring the electric field amplitude at four sensors, the ranges of the target is estimated for subsequent localization using lateration. The 4 sensors are placed along the perimeter of a $3.52 \text{ m} \times 3.52 \text{ m}$ square with each sensor at the midpoint of each side on a 1 m tripod. They quote "localization accuracy" of approximately 0.1 m when the target moves linearly between the opposite pairs of sensors. The accuracy deteriorates for circular and zigzag trajectories. While the estimated trajectories are plotted, no accuracy values are reported for these cases.

Grosse-Puppendahl et al. [168] develop Platypus, a combined identification and positioning system. Six EPS are placed on the ceiling at known positions to monitor a 2.5 m \times 2 m area directly underneath. A parametric model is developed to perform ranging based on electric field measurement leading to localization using lateration. The change in electric potential with respect to time is then used to identify said subject. The median position error is found to be 0.13 m for "slow walking" and 0.16 m for "normal walking". User identification is found to be 75% accurate for 30 participants. Fu et al. [169] then extend the work by using a grid of passive electrodes constructed from insulated copper wires underneath the floor. Regions of interests are identified based on the activated horizontal and vertical electrodes. The center of the region of interest, which is taken as the footstep's center, is estimated as the weighted average of the activated electrodes' locations. A mean position accuracy of 0.127 m is achieved. While they discuss how the system could potentially perform multi-target tracking, no experimental study for such tracking is reported.

Tang and Mandal [170] derive a parametric model between the reduction in electric field amplitude caused by the target and its distance from the EPS. This calibrated model is used for ranging followed by localization using lateration. They perform localization experiments in an $8 \text{ m} \times 10 \text{ m}$ and a $5 \text{ m} \times 8 \text{ m}$ room with three sensors positioned at 1 m height in each room. The target follows several trajectories and the mean error varies between 0.104 m and 0.272 m. Simulations suggest that the localization accuracy can be improved with denser sensor deployment. They are also able to identify between 6 participants with a 98.3% success rate and attain occupancy estimation (< 10) with an accuracy of 89.03%. They also show that by knowing the number of targets (through occupancy estimation), it is possible to track two targets. With 6 sensors in a 3 m × 3.5 m area, they attain mean and 95 percentile errors of 0.2 m and 0.78 m respectively.

Zhou et al. [171] develop P-Loc that localizes by measuring the impedance change in the existing electric powerline caused its coupling with the human body. This an extension of E-Loc reported in [172]. In both systems, the impact of the coupling is observed away from the 50/60 Hz AC mains to avoid interference. A 70 MHz sine wave signal is injected into the ground wire and its RSS is measured at multiple sockets along the line to generate the location fingerprint. Impact of noise resulting from ambient changes is mitigated by outlier removal and high pass filtering that assumes that target is faster than the environmental changes. In P-Loc, a multi-layer perceptron (MLP) is employed as the classifier to locate the target at a grid level. Further accuracy is achieved through applying a tracking model based on HMM and Viterbi search algorithm. In contrast, the E-Loc employs an SVM based classifier for coarse, grid level localization. Both systems are evaluated in a 6 m \times 10 m multi-room test location divided in 1.2 m \times 1.2 m grids with 5 sensors. E-Loc achieves 90.76% localization accuracy in identifying the location within a cell. P-Loc achieves 91.07% grid level accuracy and 0.48 m mean localization error.

Conductive inkjet technology is utilized by Gong et al. [173] to exploit both active and passive electric field sensing. Their prototype is essentially a 2.5 m \times 0.3 m sensing surface made of flexible substrate that can be deployed on or under the floor. Custom-printed conductive traces on the substrate act as electrodes and antennas for sensing. The sensing tiles are produced by printing a specific copper pattern onto the substrate. Each 0.3 m \times 0.3 m sensing tile contains four 0.12 m \times 0.12 m printed electrodes. For active sensing, one of the electrodes on each tile transmits a 5 V square wave signal to the other three that are set up as receivers. When the target's body

bridges any Tx-Rx pair, the receiver detects a signal whose amplitude is proportional to the capacitive coupling between that electrode pair. Depending on the distance between the target's body and the transmit electrode, the capacitive coupling is either transmit (target very close to the transmitter) or shunt (target not close to the transmitter) mode. While no localization is performed, experiments conducted show that it is possible to correlate the observed signals with footsteps' heel strikes and mid-swing. The system is also capable of passive electric field sensing with the electrodes sensing the powerline electric field which is coupled more strongly when a person stands on them. The change in amplitude depends on the contact area and proximity and therefore can be used to infer the location of the footstep. While no localization experiments are conducted, it is possible to differentiate among heel strikes, forefoot strikes and mid-swings between steps.

Takiguchi et al. [174] measure the change in electric field to count the number of steps a subject made with 99.4% accuracy. Kurita [175] then shows that the waveforms produced as an individual walks are unique enough for gait recognition. Kurita is able to identify subjects with a false acceptance rate of 0.61% and a false rejection rate of 2.31%. Many other works have used electric field sensing for applications synergistic with positioning. For an overview of such works, the readers are referred to the survey by Grosse-Puppendahl et al. [34].

VI. CONCLUSION: CHALLENGES AND OPPORTUNITIES

While unobtrusive passive localization using non-RF techniques is an active research field, there are many limitations and unsolved problems leading to exciting research opportunities. In this section we provide a brief overview of such challenges and opportunities.

A. Sensor Fusion and Utilization of Multiple Technologies

Localization is a multimodal, multisensory, multitechnology problem and therefore, require a multidisciplinary approach. Our survey unfortunately shows a fractured research landscape with "siloed" approach. Among the works presented in this paper, LOCI [88] is the only system that utilizes multiple types of sensors. Even this lone example employs a thermopile array in conjunction with a PIR sensor and therefore is limited to only IR sensing. Sensor fusion can make localization systems more robust, eliminate blind spots, add redundancy and simplify implementation. An ideal IPS should use existing infrastructure of a building and not require the end user to deploy significant additional resources. Rather than installing a large number of bespoke sensors for a single mode solution, it is preferable to utilize pre-existing resources like Wi-Fi network, PIR motion detectors, structural health monitoring system etc. and then supplement with other sensors. Utilizing human routine and activities of daily living (ADL) should be considered. The only such example we found is the application of A-star algorithm assisted by an accessibility map (a heatmap constructed from the daily routines of the occupants) by Yang et al. [82]. Many localization systems require initialization and estimation of background condition or empty state. Pre-existing motion sensors and/or environmental sensors (e.g. CO₂ sensors)

can reliably indicate occupancy without having to resort to complex algorithms.

B. Multiple Target Positioning & Tracking

The majority of the reported solutions are able to localize only a single target. This is perfectly acceptable for many applications (e.g. AAL for an elderly individual living alone). Yet, the full potential of DFL can only be unlocked with robust multiple target localization which is often left as a future work by most researchers. Table III lists the articles that have addressed the multi-target problem. Unfortunately, even these solutions have somewhat limited efficacy and only function for a small number of targets (up to a maximum of three among the works validated by experiments). The performance invariably degrades as soon as a second target is introduced. The multitarget solutions are purpose built to work for a set small number of targets, within controlled settings and cannot be generalized for a larger target number. The issue is exacerbated by the fact that unobtrusive passive localization solutions are often opportunistic in nature. There is scope for adopting techniques from other disciplines. However, many inherent challenges like complex nature of the medium, dynamically changing environment, significant presence of noise and interference etc. pose unique difficulties. Therefore, a paradigm shift is required. Multimodal sensing and utilizing knowledge of ADL can be effective. While machine learning can be a potential solution, they require large training corpus. The time and labor cost of site surveying make data collection a significant challenge. Alternatives like crowdsourcing, data fabrication etc. inherently compromise data quality.

C. Accuracy Evaluation and Reporting

Localization error is commonly used to demonstrate accuracy and precision. But there is no universally adopted error metric. A wide range of accuracy metrics like median, mean, percentile, quartiles of localization errors, RMSE etc. have been used. Active localization discipline has several evaluation guidelines like ISO/IEC 18305 [176] and EvAAL [177], which is used by the Indoor Positioning and Indoor Navigation (IPIN) competition. There is also a set of procedures [178] used by the annual Microsoft Indoor Localization Competition. However, these methodologies have not been widely adopted for DFL and may not be even appropriate for evaluating passive positioning systems. A consistent testing procedure is also needed for reporting the performance of positioning systems. Unfortunately, wide variations in the size and other aspects of the test location, density of sensor deployment etc. make objective evaluation and comparison among various reported systems difficult. All of these issues are compounded when comparing across different technologies and sensing modalities. The accuracy metric should be regularized by the area of coverage, the number of sensors and the cost of implementation. Therefore, it is necessary to develop a universal testing scheme that will allow for an objective, "apple-to-apple" performance comparison.

TABLE III: LIST OF ARTICLES THAT IMPLEMENTED MULTI-TARGET TRACKING

Research	Sensing Method	No of Targets	<u>Comments</u>
Liau et al. [119], 2008	Pressure (Load Cell)	2	0.2828 m of 85-percentile and 76.25-percentile for 1 and 2 targets.
Hao et al. [65], 2009	Binary PIR	2	Mean error < 0.5 m. No single target performance is quoted.
Rimminen et al. [156], 2009	Active Electric Field	2	Positioning accuracy not specified for 2 targets. ¹
Lauterbach et al. [155], 2012	Active Electric Field	2	Positioning accuracy not specified.
Lan et al. [125], 2017	Binary Pressure	3	Accuracy > 90% for up to 2 targets. $\approx 80\%$ accuracy for 3 targets. ²
Yang et al. [85], 2019	Binary PIR	2	Mean error < 0.8 m. No single target performance is quoted.
Qu et al. [110], 2019	Thermopile	3	Accuracy not quoted for multi-target.
Shi et al. [142], 2019	Vibration	2	Mean error of 0.65 m. No single target performance is quoted.
Fu et al. [169], 2019	Passive Electric Field	2	Positioning accuracy not specified for 2 target scenario.
Tang & Mandal [170], 2019	Passive Electric Field	2	Mean error 0.104 m - 0.272 m for single and 0.2 m for multi-target. $^{\rm 3}$
Yang et al. [87], 2020	Analog PIR	3	Mean errors of 0.43 m, 0.6 m and 0.82 m for 1, 2 and 3 targets.
Narayana et al. [88], 2020	Analog PIR + Thermopile	3	80 percentile errors of 0.35 m and 0.88 m for 1 and 3 targets. ⁴

¹For two target scenario 99% & 90% discrimination performance with gaps of 1.1 m & 0.78 m respectively.

 2 Grid level positioning accuracy on a 3.6 m \times 3.6 m testbed divided into a grid of 6 \times 6. Needs to know the number of targets.

³Single target scenario used 3 sensors. Multi-target scenario used 6 sensors in a much smaller test area.

⁴For multi-target scenario, between 2 and 3 targets were within the FoV of the sensor.

TABLE IV: LIST OF ARTICLES THAT DISCUSS GROUND TRUTH RECORDING SYSTEM

Research	Ground Truth System
Rimminen et al. [156], 2009	Customized system; subject wore a hat connected with encoder/pulley.
Prance et al. [167], 2012	Microsoft lifecam VX-3000 USB camera; tracked a yellow dot on the subject's shoulder.
Yin et al. [77], 2016	Bluetooth Tag.
Poston et al. [131], 2017	Custom designed system using PulsedLightmodel LIDAR-Litev2 with precision real-time clock.
Yang et al. [82], 2018	Opti-track Motion Capture system.
Fu et al. [169], 2019	Kinect V2 skeletal tracking.
Faulkner et al. [161], 2020	HTC Vive with two Lighthouses, Tracker affixed to subject's head.
Tariq et al. [164], 2020	Marvelmind robotics ultrasound system; 4 ceiling mounted anchors tracking a tag affixed on a hat worn by the subject.
Yang et al. [87], 2020	UWB-based localization system YCHIOT-MINI3S.
Yang et al. [87], 2020	UWB-based localization system YCHIOT-MINI3S.

D. Ground Truth Accuracy

The localization error is computed as the difference between the position of the target estimated by the system and the actual position of the target or the ground truth (GT). Therefore, the integrity of the reported accuracy depends on the accuracy of the GT. The GT must be an order of magnitude more accurate than the positioning system. Unfortunately, the majority of the published articles gloss over (e.g. a camera was used to determine the actual position of the target, the target walked along a predefined trajectory) or do not describe this critical step. As can be seen from Table IV, only a handful of the papers provide details about the ground truth systems utilized. There seems to be an implicit assumption that the ground truth is accurate. However, published report suggests that ground truth recording can be significantly inaccurate and a small error in ground truth measurement can have significant impact on the positioning evaluation [179]. Furthermore, the calibration of parametric models (e.g. distance vs signal attenuation) also requires accurate GT recording. Motion capture technology to capture GT is not economically feasible for most researchers. Options like gaming technology (e.g. Kinect, HTC Vive etc.)

should be investigated for accurate and automated GT recording. An economically feasible system can also be useful for building ML training corpora.

E. Evaluation in Real-World Environment

The cost of human time and labor limits the collection of data required for calibration, model development, ML training etc. to a brief period and at a few, sometimes just a single, locations. However, this compromise means that the temporal and spatial variation and diversity are not adequately captured. Similar practical considerations constrain the performance evaluation of the positioning systems. There are several public domain datasets in various ML repositories for wireless DFL. However, the techniques investigated in this article lack such resource, the onus of data collection is on the researchers. Yin et al. [77] collect PIR motion sensor data for a year in an apartment with two elderly occupants. But there is no concurrent recording of GT. Even when they collect data over a two week span with tagged occupants, they use a Bluetooth-based GT recording system which is not very accurate. There are some reported works where mock apartments were used (e.g. [82], [90], [120], [166]). There are also examples like the Smart Condo [71] and INRIA-Nancy smart apartment [122] that were specifically set up for long term data collection and evaluation. More such efforts are necessary and the lack of opensource data needs to be addressed.

F. Practical Considerations

A localization system has to be readily transferrable from one location to another without significant recalibration. In addition, the indoor environment is also quite dynamic and is inherently unsuited to techniques that require frequent and extensive calibration. A positioning system that requires significant recalibration whenever a furniture is moved, is not viable for real world usage. Therefore, there is a need for developing DFL system that can self-calibrate and adapt to changing scenarios. If necessary, even localization accuracy can be traded off for robustness and less reliance on calibration.

Practical DFL systems need to position and track in real time. In contrast, the majority of the implemented prototypes use data collected during experiments for positioning at a later time. In many cases, the same data is divided into multiple sets with some used for calibration and training and the rest used for performance evaluation. It is difficult to ascertain whether these systems can perform adequately with a different set of sensor data, let alone in real time, at a different location in dynamically changing environment. Also, critical factors like computational complexity, energy consumptions etc. are absent or glossed over in most articles.

Is accuracy the most important consideration while designing a localization system? Benchmarking in terms of accuracy is a staple in the published articles. More consideration needs to be given to practicality, robustness, ease of deployment and cost. Depending on the application, localization accuracy can be traded off with other performance parameters. As an example, if the goal is to raise alarm in case of a fall, the key accuracy metric should be the detection performance. A "room level" localization accuracy is perfectly acceptable if the system can detect every single fall event without false alarm.

G. Privacy and Security

Location (especially in real-time), daily routine etc. that are considered to be extremely private information are collected and stored by an IPS. Therefore, there is an inherent risk of privacy breach. Also, many applications are intended to be used for the elderly who are often more vulnerable to technology centric malicious activities. RF sensing based localization systems are vulnerable to jamming or spoofing [180, 181]. In passive localization systems, the target does not have a device on their person that can be compromised, or its signal intercepted. Therefore, they are more robust than active localization techniques. The techniques discussed in this article are also inherently more secure than their wireless counterparts. For example, Visible light or IR signals are confined within a small area and thus cannot be interfered with without being at close proximity. Floor based localization systems will require the malicious entity to have physical access to the premises. However, the majority of the techniques discussed in this article utilize/envision the deployment of the sensors as a WSN, potentially within an IoT framework and are therefore

vulnerable to an attack to the network just like wireless localization techniques [182]. Marginal processing power and energy constraints make implementing robust security protocols challenging. Security and privacy are well investigated within the IoT discipline [183, 184]. That domain knowledge should be applied in the context of DFL for in situ evaluation and risk analysis which is currently lacking.

REFERENCES

- A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of things for smart cities," *IEEE Internet of Things journal*, vol. 1, no. 1, pp. 22-32, 2014.
- [2] J. Z. Liang, N. Corso, E. Turner, and A. Zakhor, "Image based localization in indoor environments," in *Computing for Geospatial Research and Application (COM. Geo), 2013 Fourth International Conference on*, 2013: IEEE, pp. 70-75.
- [3] R. Li, J. Liu, L. Zhang, and Y. Hang, "LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments," in *Inertial Sensors and Systems Symposium (ISS), 2014 DGON*, 2014: IEEE, pp. 1-15.
- [4] F. Ijaz, H. K. Yang, A. W. Ahmad, and C. Lee, "Indoor positioning: A review of indoor ultrasonic positioning systems," in Advanced Communication Technology (ICACT), 2013 15th International Conference on, 2013: IEEE, pp. 1146-1150.
- [5] A. Maddumabandara, H. Leung, and M. Liu, "Experimental evaluation of indoor localization using wireless sensor networks," *IEEE Sensors Journal*, vol. 15, no. 9, pp. 5228-5237, 2015.
- [6] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, "MaLoc: A practical magnetic fingerprinting approach to indoor localization using smartphones," in *Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing*, 2014, pp. 243-253.
- [7] A. Yassin *et al.*, "Recent advances in indoor localization: A survey on theoretical approaches and applications," *IEEE Communications Surveys* & *Tutorials*, vol. 19, no. 2, pp. 1327-1346, 2016.
- [8] M. Maheepala, A. Z. Kouzani, and M. A. Joordens, "Light-Based Indoor Positioning Systems: A Review," *IEEE Sensors Journal*, vol. 20, no. 8, pp. 3971-3995, 2020.
- [9] P. Müller, S. Ali-Löytty, J. Lekkala, and R. Piché, "Indoor localisation using aroma fingerprints: A first sniff," in *Positioning, Navigation and Communications (WPNC), 2017 14th Workshop on*, 2017: IEEE, pp. 1-5.
- [10] L. M. Candanedo and V. Feldheim, "Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models," *Energy and Buildings*, vol. 112, pp. 28-39, 2016.
- [11] M. Gruber, A. Trüschel, and J.-O. Dalenbäck, "CO2 sensors for occupancy estimations: Potential in building automation applications," *Energy and Buildings*, vol. 84, pp. 548-556, 2014.
- [12] J. Yang, M. Santamouris, and S. E. Lee, "Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings," *Energy and Buildings*, vol. 121, pp. 344-349, 2016.
- [13] P. Remagnino, G. A. Jones, N. Paragios, and C. S. Regazzoni, "Videobased surveillance systems: computer vision and distributed processing," 2002.
- [14] Y.-L. Hou and G. K. Pang, "People counting and human detection in a challenging situation," *IEEE transactions on systems, man, and cybernetics-part a: systems and humans,* vol. 41, no. 1, pp. 24-33, 2010.
- [15] L. Xia, C.-C. Chen, and J. K. Aggarwal, "Human detection using depth information by kinect," in CVPR 2011 workshops, 2011: IEEE, pp. 15-22.
- [16] M. R. U. Saputra, G. D. Putra, and P. I. Santosa, "Indoor human tracking application using multiple depth-cameras," in 2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2012: IEEE, pp. 307-312.
- [17] M. M. Rapoport, "The home under surveillance: A tripartite assemblage," *Surveillance & Society*, vol. 10, no. 3/4, pp. 320-333, 2012.
- [18] Y. Ma, G. Zhou, and S. Wang, "WiFi sensing with channel state information: A survey," ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1-36, 2019.
- [19] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, "Widar2. 0: Passive human tracking with a single wi-fi link," in *Proceedings of the* 16th Annual International Conference on Mobile Systems, Applications, and Services, 2018, pp. 350-361.

- [20] D. Konings, F. Alam, F. Noble, and E. M. Lai, "Device-Free Localization Systems Utilizing Wireless RSSI: A Comparative Practical Investigation," *IEEE Sensors Journal*, vol. 19, no. 7, pp. 2747-2757, 2018.
- [21] R. C. Shit *et al.*, "Ubiquitous localization (UbiLoc): A survey and taxonomy on device free localization for smart world," *IEEE Communications Surveys & Tutorials*, vol. 21, no. 4, pp. 3532-3564, 2019.
- [22] F. Zafari, A. Gkelias, and K. K. Leung, "A survey of indoor localization systems and technologies," *IEEE Communications Surveys & Tutorials*, vol. 21, no. 3, pp. 2568-2599, 2019.
- [23] S. Denis, R. Berkvens, and M. Weyn, "A Survey on Detection, Tracking and Identification in Radio Frequency-Based Device-Free Localization," *Sensors*, vol. 19, no. 23, p. 5329, 2019.
- [24] M. A. Al-qaness *et al.*, "Channel state information from pure communication to sense and track human motion: A survey," *Sensors*, vol. 19, no. 15, p. 3329, 2019.
- [25] Z. Yang, C. Wu, Z. Zhou, X. Zhang, X. Wang, and Y. Liu, "Mobility increases localizability: A survey on wireless indoor localization using inertial sensors," ACM Computing Surveys (Csur), vol. 47, no. 3, pp. 1-34, 2015.
- [26] B. Jang and H. Kim, "Indoor positioning technologies without offline fingerprinting map: A survey," *IEEE Communications Surveys & Tutorials*, vol. 21, no. 1, pp. 508-525, 2018.
- [27] S. He and S.-H. G. Chan, "Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons," *IEEE Communications Surveys & Tutorials*, vol. 18, no. 1, pp. 466-490, 2015.
- [28] B. Lashkari, J. Rezazadeh, R. Farahbakhsh, and K. Sandrasegaran, "Crowdsourcing and sensing for indoor localization in IoT: A review," *IEEE Sensors Journal*, vol. 19, no. 7, pp. 2408-2434, 2018.
- [29] J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni, "A survey on wireless indoor localization from the device perspective," ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1-31, 2016.
- [30] J. Luo, L. Fan, and H. Li, "Indoor positioning systems based on visible light communication: state of the art," *IEEE Communications Surveys & Tutorials*, vol. 19, no. 4, pp. 2871-2893, 2017.
- [31] Y. Zhuang et al., "A survey of positioning systems using visible LED lights," *IEEE Communications Surveys & Tutorials*, vol. 20, no. 3, pp. 1963-1988, 2018.
- [32] M. F. Keskin, A. D. Sezer, and S. Gezici, "Localization via visible light systems," *Proceedings of the IEEE*, vol. 106, no. 6, pp. 1063-1088, 2018.
- [33] M. Afzalan and F. Jazizadeh, "Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes," *ACM Computing Surveys (CSUR)*, vol. 52, no. 2, pp. 1-36, 2019.
- [34] T. Grosse-Puppendahl et al., "Finding common ground: A survey of capacitive sensing in human-computer interaction," in *Proceedings of the* 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 3293-3315.
- [35] T. Teixeira, G. Dublon, and A. Savvides, "A survey of human-sensing: Methods for detecting presence, count, location, track, and identity," ACM Computing Surveys, vol. 5, no. 1, pp. 59-69, 2010.
- [36] R. F. Brena, J. P. García-Vázquez, C. E. Galván-Tejada, D. Muñoz-Rodriguez, C. Vargas-Rosales, and J. Fangmeyer, "Evolution of indoor positioning technologies: A survey," *Journal of Sensors*, vol. 2017, 2017.
- [37] F. Khelifi, A. Bradai, A. Benslimane, P. Rawat, and M. Atri, "A survey of localization systems in internet of things," *Mobile Networks and Applications*, vol. 24, no. 3, pp. 761-785, 2019.
- [38] H. Yang, W.-D. Zhong, C. Chen, A. Alphones, and P. Du, "QoS-Driven Optimized Design-Based Integrated Visible Light Communication and Positioning for Indoor IoT Networks," *IEEE Internet of Things Journal*, vol. 7, no. 1, pp. 269-283, 2019.
- [39] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, "Visible light communication, networking, and sensing: A survey, potential and challenges," *IEEE communications surveys & tutorials*, vol. 17, no. 4, pp. 2047-2077, 2015.
- [40] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, "Human Sensing Using Visible Light Communication," presented at the Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 2015.
- [41] S. Zhang, K. Liu, Y. Ma, X. Huang, X. Gong, and Y. Zhang, "An Accurate Geometrical Multi-Target Device-Free Localization Method Using Light Sensors," *IEEE Sensors Journal*, vol. 18, no. 18, pp. 7619-7632, 2018, doi: 10.1109/JSEN.2018.2862412.
- [42] K. Majeed and S. Hranilovic, "Performance Bounds on Passive Indoor Positioning using Visible Light," *Journal of Lightwave Technology*, 2020.

- [43] N. Faulkner, F. Alam, M. Legg, and S. Demidenko, "Watchers on the Wall: Passive Visible Light-Based Positioning and Tracking with Embedded Light-Sensors on the Wall," *IEEE Transactions on Instrumentation and Measurement*, 2019.
- [44] T. Li, Q. Liu, and X. Zhou, "Practical human sensing in the light," in Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, 2016, pp. 71-84.
- [45] D. Konings, N. Faulkner, F. Alam, E. M.-K. Lai, and S. Demidenko, "FieldLight: Device-Free Indoor Human Localization Using Passive Visible Light Positioning and Artificial Potential Fields," *IEEE Sensors Journal*, vol. 20, no. 2, pp. 1054-1066, 2019.
- [46] V. Nguyen, M. Ibrahim, S. Rupavatharam, M. Jawahar, M. Gruteser, and R. Howard, "Eyelight: Light-and-Shadow-Based Occupancy Estimation and Room Activity Recognition," in *IEEE INFOCOM 2018 - IEEE Conference on Computer Communications*, 16-19 April 2018 2018, pp. 351-359, doi: 10.1109/INFOCOM.2018.8485867.
- [47] E. Di Lascio, A. Varshney, T. Voigt, and C. Pérez-Penichet, "LocaLight-A Battery-free Passive Localization System Using Visible Light," in 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2016: IEEE, pp. 1-2.
- [48] K. Deprez, S. Bastiaens, L. Martens, W. Joseph, and D. Plets, "Passive Visible Light Detection Of Humans," *Sensors*, vol. 20, no. 7, p. 1902, 2020.
- [49] M. Ibrahim, V. Nguyen, S. Rupavatharam, M. Jawahar, M. Gruteser, and R. Howard, "Visible light based activity sensing using ceiling photosensors," presented at the Proceedings of the 3rd Workshop on Visible Light Communication Systems, New York City, New York, 2016.
- [50] K. Majeed and S. Hranilovic, "Passive Indoor Localization for Visible Light Communication Systems," in 2018 IEEE Global Communications Conference (GLOBECOM), 2018: IEEE, pp. 1-6.
- [51] A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheed, and J. M. Elmirghani, "LiDAL: light detection and localization," *IEEE Access*, vol. 7, pp. 85645-85687, 2019.
- [52] A. A. Al-Hameed, S. H. Younus, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, "Artificial Neural Network for LiDAL Systems," *IEEE Access*, vol. 7, pp. 109427-109438, 2019.
- [53] Y. Yang, J. Hao, J. Luo, and S. J. Pan, "CeilingSee: Device-free occupancy inference through lighting infrastructure based LED sensing," in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 13-17 March 2017 2017, pp. 247-256, doi: 10.1109/PERCOM.2017.7917871.
- [54] N. Faulkner, F. Alam, M. Legg, and S. Demidenko, "Smart wall: Passive visible light positioning with ambient light only," in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2019: IEEE, pp. 1-6.
- [55] D. Konings, B. Parr, F. Alam, and E. M.-K. Lai, "Falcon: Fused Application of Light Based Positioning Coupled With Onboard Network Localization," *IEEE Access*, vol. 6, pp. 36155-36167, 2018.
- [56] D. Konings, F. Alam, F. Noble, and E. M. Lai, "SpringLoc: A device-free localization technique for indoor positioning and tracking using adaptive RSSI spring relaxation," *Ieee Access*, vol. 7, pp. 56960-56973, 2019.
- [57] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, "Extending Mobile Interaction Through Near-Field Visible Light Sensing," presented at the Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 2015.
- [58] T. Li, X. Xiong, Y. Xie, G. Hito, X.-D. Yang, and X. Zhou, "Reconstructing hand poses using visible light," *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, vol. 1, no. 3, pp. 1-20, 2017.
- [59] R. H. Venkatnarayan and M. Shahzad, "Gesture recognition using ambient light," *Proceedings of the ACM on Interactive, Mobile, Wearable* and Ubiquitous Technologies, vol. 2, no. 1, pp. 1-28, 2018.
- [60] Q. Hu, Z. Yu, Z. Wang, B. Guo, and C. Chen, "ViHand: Gesture Recognition with Ambient Light," in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019: IEEE, pp. 468-474.
- [61] H. Duan, M. Huang, Y. Yang, J. Hao, and L. Chen, "Ambient Light Based Hand Gesture Recognition Enabled by Recurrent Neural Network," *IEEE Access*, vol. 8, pp. 7303-7312, 2020.
- [62] C. Lee et al., "Indoor positioning system based on incident angles of infrared emitters," in 30th Annual Conference of IEEE Industrial

Electronics Society, 2004. IECON 2004, 2004, vol. 3: IEEE, pp. 2218-2222.

- [63] B. Song, H. Choi, and H. S. Lee, "Surveillance tracking system using passive infrared motion sensors in wireless sensor network," in 2008 International Conference on Information Networking, 2008: IEEE, pp. 1-5.
- [64] H. H. Kim, K. N. Ha, S. Lee, and K. C. Lee, "Resident locationrecognition algorithm using a Bayesian classifier in the PIR sensor-based indoor location-aware system," *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, vol. 39, no. 2, pp. 240-245, 2009.
- [65] Q. Hao, F. Hu, and Y. Xiao, "Multiple human tracking and identification with wireless distributed pyroelectric sensor systems," *IEEE Systems Journal*, vol. 3, no. 4, pp. 428-439, 2009.
- [66] Q. Hao, F. Hu, and J. Lu, "Distributed multiple human tracking with wireless binary pyroelectric infrared (PIR) sensor networks," in *SENSORS, 2010 IEEE*, 2010: IEEE, pp. 946-950.
- [67] P. Zappi, E. Farella, and L. Benini, "Tracking motion direction and distance with pyroelectric IR sensors," *IEEE Sensors Journal*, vol. 10, no. 9, pp. 1486-1494, 2010.
- [68] G. Monaci and A. Pandharipande, "Indoor user zoning and tracking in passive infrared sensing systems," in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012: IEEE, pp. 1089-1093.
- [69] C. Jing, B. Zhou, N. Kim, and Y. Kim, "Performance evaluation of an indoor positioning scheme using infrared motion sensors," *Information*, vol. 5, no. 4, pp. 548-557, 2014.
- [70] M. Sioutis and Y. Tan, "User indoor location system with passive infrared motion sensors and space subdivision," in *International Conference on Distributed, Ambient, and Pervasive Interactions*, 2014: Springer, pp. 486-497.
- [71] I. Vlasenko, I. Nikolaidis, and E. Stroulia, "The smart-condo: Optimizing sensor placement for indoor localization," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 45, no. 3, pp. 436-453, 2014.
- [72] B. Yang, J. Luo, and Q. Liu, "A novel low-cost and small-size human tracking system with pyroelectric infrared sensor mesh network," *Infrared Physics & Technology*, vol. 63, pp. 147-156, 2014.
 [73] T. Miyazaki and Y. Kasama, "Multiple human tracking using binary
- [73] T. Miyazaki and Y. Kasama, "Multiple human tracking using binary infrared sensors," *Sensors*, vol. 15, no. 6, pp. 13459-13476, 2015.
- [74] S. Narayana, R. V. Prasad, V. S. Rao, T. V. Prabhakar, S. S. Kowshik, and M. S. Iyer, "PIR sensors: Characterization and novel localization technique," in *Proceedings of the 14th international conference on information processing in sensor networks*, 2015, pp. 142-153.
- [75] B. Yang, Y. Lei, and B. Yan, "Distributed multi-human location algorithm using naive bayes classifier for a binary pyroelectric infrared sensor tracking system," *IEEE Sensors journal*, vol. 16, no. 1, pp. 216-223, 2015.
- [76] B. Yang, X. Li, and J. Luo, "A novel multi-human location method for distributed binary pyroelectric infrared sensor tracking system: Region partition using PNN and bearing-crossing location," *Infrared Physics & Technology*, vol. 68, pp. 35-43, 2015.
- [77] J. Yin, M. Fang, G. Mokhtari, and Q. Zhang, "Multi-resident location tracking in smart home through non-wearable unobtrusive sensors," in *International Conference on Smart Homes and Health Telematics*, 2016: Springer, pp. 3-13.
- [78] Y. Li, D. Li, Y. Cheng, G. Liu, J. Niu, and L. Su, "A novel human tracking and localization system based on pyroelectric infrared sensors: demonstration abstract," in *Proceedings of the 15th international* conference on information processing in sensor networks, 2016, pp. 1-2.
- [79] X. Luo, T. Liu, B. Shen, L. Gao, and X. Luo, "Human indoor localization based on ceiling mounted pir sensor nodes," in 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2016: IEEE, pp. 868-874.
- [80] X. Luo, Q. Guan, H. Tan, L. Gao, Z. Wang, and X. Luo, "Simultaneous indoor tracking and activity recognition using pyroelectric infrared sensors," *Sensors*, vol. 17, no. 8, p. 1738, 2017.
- [81] B. Mukhopadhyay, S. Sarangi, S. Srirangarajan, and S. Kar, "Indoor localization using analog output of pyroelectric infrared sensors," in 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018: IEEE, pp. 1-6.
- [82] D. Yang, B. Xu, K. Rao, and W. Sheng, "Passive infrared (PIR)-based indoor position tracking for smart homes using accessibility maps and astar algorithm," *Sensors*, vol. 18, no. 2, p. 332, 2018.
- [83] L. Wu, Y. Wang, and H. Liu, "Occupancy detection and localization by monitoring nonlinear energy flow of a shuttered passive infrared sensor," *IEEE Sensors Journal*, vol. 18, no. 21, pp. 8656-8666, 2018.

- [84] T. Yang, X. Liu, S. Tang, J. Niu, and P. Guo, "Push the Limit of PIR Sensor based Localization," arXiv preprint arXiv:1901.10700, 2019.
- [85] B. Yang, Q. Wei, and L. Yuan, "Location ambiguity resolution and tracking method of human targets in wireless infrared sensor network," *Infrared Physics & Technology*, vol. 96, pp. 174-183, 2019.
- [86] X. Liu, T. Yang, S. Tang, P. Guo, and J. Niu, "From relative azimuth to absolute location: pushing the limit of PIR sensor based localization," in *Proceedings of the 26th Annual International Conference on Mobile Computing and Networking*, 2020, pp. 1-14.
- [87] T. Yang, P. Guo, W. Liu, X. Liu, and T. Hao, "A Deep-learning-based Method for PIR-based Multi-person Localization," arXiv preprint arXiv:2004.04329, 2020.
- [88] S. Narayana *et al.*, "LOCI: Privacy-aware, Device-free, Low-power Localization of Multiple Persons using IR Sensors."
- [89] B. Mukhopadhyay, S. Srirangarajan, and S. Kar, "Modeling the analog response of passive infrared sensor," *Sensors and Actuators A: Physical*, vol. 279, pp. 65-74, 2018.
- [90] M. P. Fanti, G. Faraut, J.-J. Lesage, and M. Roccotelli, "An integrated framework for binary sensor placement and inhabitants location tracking," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 48, no. 1, pp. 154-160, 2016.
- [91] P. Zappi, E. Farella, and L. Benini, "Enhancing the spatial resolution of presence detection in a PIR based wireless surveillance network," in 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, 2007: IEEE, pp. 295-300.
- [92] L. Wu and Y. Wang, "Shuttered Passive Infrared Sensor for Occupancy Detection: Exploring a Low Power Electro-Mechanical Driving Approach," in ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2018: American Society of Mechanical Engineers Digital Collection.
- [93] J. L. Honorato, I. Spiniak, and M. Torres-Torriti, "Human detection using thermopiles," in 2008 IEEE Latin American Robotic Symposium, 2008: IEEE, pp. 151-157.
- [94] J. Kemper and D. Hauschildt, "Passive infrared localization with a probability hypothesis density filter," in 2010 7th Workshop on Positioning, Navigation and Communication, 2010: IEEE, pp. 68-76.
- [95] M. Kuki, H. Nakajima, N. Tsuchiya, and Y. Hata, "Human movement trajectory recording for home alone by thermopile array sensor," in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012: IEEE, pp. 2042-2047.
- [96] H. M. Ng, "Human localization and activity detection using thermopile sensors," in 2013 ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2013: IEEE, pp. 337-338.
- [97] P. Hevesi, S. Wille, G. Pirkl, N. Wehn, and P. Lukowicz, "Monitoring household activities and user location with a cheap, unobtrusive thermal sensor array," in *Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing*, 2014, pp. 141-145.
- [98] C. Basu and A. Rowe, "Tracking motion and proxemics using thermalsensor array," arXiv preprint arXiv:1511.08166, 2015.
- [99] W.-H. Chen and H.-P. Ma, "A fall detection system based on infrared array sensors with tracking capability for the elderly at home," in 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), 2015: IEEE, pp. 428-434.
- [100]Z. Chen, Y. Wang, and H. Liu, "Unobtrusive sensor-based occupancy facing direction detection and tracking using advanced machine learning algorithms," *IEEE Sensors Journal*, vol. 18, no. 15, pp. 6360-6368, 2018.
- [101]C. Kowalski, K. Blohm, S. Weiss, M. Pfingsthorn, P. Gliesche, and A. Hein, "Multi Low-resolution Infrared Sensor Setup for Privacypreserving Unobtrusive Indoor Localization," 2019.
- [102] A. A. Trofimova, A. Masciadri, F. Veronese, and F. Salice, "Indoor human detection based on thermal array sensor data and adaptive background estimation," *Journal of Computer and Communications*, vol. 5, no. 4, pp. 16-28, 2017.
- [103] A. Hayashida, V. Moshnyaga, and K. Hashimoto, "The use of thermal ir array sensor for indoor fall detection," in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017: IEEE, pp. 594-599.
- [104] Y. Karayaneva, S. Baker, B. Tan, and Y. Jing, "Use of low-resolution infrared pixel array for passive human motion movement and recognition," in *Proceedings of the 32nd International BCS Human Computer Interaction Conference 32*, 2018, pp. 1-2.
- [105]I. Lorato, T. Bakkes, S. Stuijk, M. Meftah, and G. De Haan, "Unobtrusive respiratory flow monitoring using a thermopile array: A feasibility study," *Applied Sciences*, vol. 9, no. 12, p. 2449, 2019.

- [106]M. Gochoo et al., "Novel IoT-Based Privacy-Preserving Yoga Posture Recognition System Using Low-Resolution Infrared Sensors and Deep Learning," *IEEE Internet of Things Journal*, vol. 6, no. 4, pp. 7192-7200, 2019.
- [107] M. Kuki, H. Nakajima, N. Tsuchiya, K. Kuramoto, S. Kobashi, and Y. Hata, "Mining multi human locations using thermopile array sensors," in 2013 IEEE 43rd International Symposium on Multiple-Valued Logic, 2013: IEEE, pp. 59-64.
- [108] M. Kuki, H. Nakajima, N. Tsuchiya, and Y. Hata, "Multi-human locating in real environment by thermal sensor," in 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013: IEEE, pp. 4623-4628.
- [109] A. D. Shetty, B. Shubha, and K. Suryanarayana, "Detection and tracking of a human using the infrared thermopile array sensor—"Grid-EYE"," in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017: IEEE, pp. 1490-1495.
- [110]D. Qu, B. Yang, and N. Gu, "Indoor multiple human targets localization and tracking using thermopile sensor," *Infrared Physics & Technology*, vol. 97, pp. 349-359, 2019.
- [111] H. Santo, T. Maekawa, and Y. Matsushita, "Device-free and privacy preserving indoor positioning using infrared retro-reflection imaging," in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2017: IEEE, pp. 141-152.
- [112]A. Pedotti, "Simple equipment used in clinical practice for evaluation of locomotion," *IEEE Transactions on Biomedical Engineering*, no. 5, pp. 456-461, 1977.
- [113]M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria, "The ORL active floor [sensor system]," *IEEE Personal Communications*, vol. 4, no. 5, pp. 35-41, 1997.
- [114] R. J. Orr and G. D. Abowd, "The smart floor: A mechanism for natural user identification and tracking," in *CHI'00 extended abstracts on Human factors in computing systems*, 2000, pp. 275-276.
- [115] Y. Kaddoura, J. King, and A. Helal, "Cost-precision tradeoffs in unencumbered floor-based indoor location tracking," in *Proceedings of* the third International Conference On Smart homes and health Telematic (ICOST), 2005: Citeseer.
- [116]J. Paradiso, C. Abler, K.-y. Hsiao, and M. Reynolds, "The magic carpet: physical sensing for immersive environments," in *CHI'97 Extended Abstracts on Human Factors in Computing Systems*, 1997, pp. 277-278.
- [117] S. Pirttikangas, J. Suutala, J. Riekki, and J. Röning, "Learning vector quantization in footstep identification," in *Proc. 3rd IASTED International Conference on Artificial Intelligence and Applications (AIA* 2003), 2003: Benalmadena, Spain, pp. 413-417.
- [118] L. McElligott, M. Dillon, K. Leydon, B. Richardson, M. Fernström, and J. A. Paradiso, "'ForSe FIElds'-Force Sensors for Interactive Environments," in *International Conference on Ubiquitous Computing*, 2002: Springer, pp. 168-175.
- [119]W.-H. Liau, C.-L. Wu, and L.-C. Fu, "Inhabitants tracking system in a cluttered home environment via floor load sensors," *IEEE Transactions* on Automation Science and Engineering, vol. 5, no. 1, pp. 10-20, 2008.
- [120]M. Andries, O. Simonin, and F. Charpillet, "Localization of humans, objects, and robots interacting on load-sensing floors," *IEEE Sensors Journal*, vol. 16, no. 4, pp. 1026-1037, 2015.
- [121] N. Pepin, O. Simonin, and F. Charpillet, "Intelligent Tiles-Putting Situated Multi-Agents Models in Real World," in *ICAART*, 2009, pp. 513-519.
- [122]M. Daher, A. Diab, M. E. B. El Najjar, M. A. Khalil, and F. Charpillet, "Elder tracking and fall detection system using smart tiles," *IEEE Sensors Journal*, vol. 17, no. 2, pp. 469-479, 2016.
- [123] I. Al-Naimi and C. B. Wong, "Indoor human detection and tracking using advanced smart floor," in 2017 8th International Conference on Information and Communication Systems (ICICS), 2017: IEEE, pp. 34-39.
- [124] T. Murakita, T. Ikeda, and H. Ishiguro, "Human tracking using floor sensors based on the Markov chain Monte Carlo method," in *Proceedings* of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004, vol. 4: IEEE, pp. 917-920.
- [125] G. Lan, J. Liang, G. Liu, and Q. Hao, "Development of a smart floor for target localization with Bayesian binary sensing," in 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), 2017: IEEE, pp. 447-453.
- [126] G. Lan, X. Hu, and Q. Hao, "A bayesian approach for targets localization using binary sensor networks," in 2015 8th International Symposium on Computational Intelligence and Design (ISCID), 2015, vol. 2: IEEE, pp. 453-456.

- [127] T. K. Agrawal, S. Thomassey, C. Cochrane, G. Lemort, and V. Koncar, "Low-cost intelligent carpet system for footstep detection," *IEEE Sensors Journal*, vol. 17, no. 13, pp. 4239-4247, 2017.
- [128]J. Yun, S.-H. Lee, W.-T. Woo, and J.-H. Ryu, "The user identification system using walking pattern over the ubifloor," 제어로봇시스템학회 국제학술대회 논문집, pp. 1046-1050, 2003.
- [129] L. Middleton, A. A. Buss, A. Bazin, and M. S. Nixon, "A floor sensor system for gait recognition," in *Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05)*, 2005: IEEE, pp. 171-176.
- [130]J. A. Cantoral-Ceballos *et al.*, "Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments," *IEEE sensors Journal*, vol. 15, no. 1, pp. 279-289, 2014.
- [131]J. D. Poston, R. M. Buehrer, and P. A. Tarazaga, "Indoor footstep localization from structural dynamics instrumentation," *Mechanical Systems and Signal Processing*, vol. 88, pp. 224-239, 2017.
- [132]C. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, "Structural health monitoring framework based on Internet of Things: A survey," *IEEE Internet of Things Journal*, vol. 4, no. 3, pp. 619-635, 2017.
- [133] W. Chen, M. Guan, L. Wang, R. Ruby, and K. Wu, "FLoc: Device-free passive indoor localization in complex environments," in 2017 IEEE International Conference on Communications (ICC), 2017: IEEE, pp. 1-6.
- [134]R. Bahroun, O. Michel, F. Frassati, M. Carmona, and J.-L. Lacoume, "New algorithm for footstep localization using seismic sensors in an indoor environment," *Journal of Sound and Vibration*, vol. 333, no. 3, pp. 1046-1066, 2014.
- [135]M. Mirshekari, S. Pan, J. Fagert, E. M. Schooler, P. Zhang, and H. Y. Noh, "Occupant localization using footstep-induced structural vibration," *Mechanical Systems and Signal Processing*, vol. 112, pp. 77-97, 2018.
- [136] M. Mirshekari, J. Fagert, S. Pan, P. Zhang, and H. Y. Noh, "Step-Level Occupant Detection across Different Structures through Footstep-Induced Floor Vibration Using Model Transfer," *Journal of Engineering Mechanics*, vol. 146, no. 3, p. 04019137, 2020.
- [137] M. Mirshekari, S. Pan, P. Zhang, and H. Y. Noh, "Characterizing wave propagation to improve indoor step-level person localization using floor vibration," in *Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016*, 2016, vol. 9803: International Society for Optics and Photonics, p. 980305.
- [138] S. Pan, A. Bonde, J. Jing, L. Zhang, P. Zhang, and H. Y. Noh, "Boes: building occupancy estimation system using sparse ambient vibration monitoring," in *Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014*, 2014, vol. 9061: International Society for Optics and Photonics, p. 906110.
- [139]J. Clemente, F. Li, M. Valero, and W. Song, "Smart seismic sensing for indoor fall detection, location and notification," *IEEE journal of biomedical and health informatics*, 2019.
- [140]S. Pan et al., "Footprintid: Indoor pedestrian identification through ambient structural vibration sensing," *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, vol. 1, no. 3, pp. 1-31, 2017.
- [141] S. Pan, M. Mirshekari, P. Zhang, and H. Y. Noh, "Occupant traffic estimation through structural vibration sensing," in *Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems* 2016, 2016, vol. 9803: International Society for Optics and Photonics, p. 980306.
- [142] L. Shi et al., "Device-free Multiple People Localization through Floor Vibration," in Proceedings of the 1st ACM International Workshop on Device-Free Human Sensing, 2019, pp. 57-61.
- [143] J. D. Poston, R. M. Buehrer, A. G. Woolard, and P. A. Tarazaga, "Indoor positioning from vibration localization in smart buildings," in 2016 *IEEE/ION Position, Location and Navigation Symposium (PLANS)*, 2016: IEEE, pp. 366-372.
- [144] J. D. Poston, "Toward Tracking Multiple Building Occupants by Footstep Vibrations," in 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2018: IEEE, pp. 86-90.
- [145]S. e. Alajlouni and P. Tarazaga, "A new fast and calibration-free method for footstep impact localization in an instrumented floor," *Journal of Vibration and Control*, vol. 25, no. 10, pp. 1629-1638, 2019.
- [146]P. A. Tarazaga, "Evaluation of a new energy-based human tracking method in a smart building using floor vibration measurements," in *Dynamics of Civil Structures, Volume 2*: Springer, 2019, pp. 289-292.

- [147] S. Drira, Y. Reuland, N. F. Olsen, S. G. Pai, and I. F. Smith, "Occupantdetection strategy using footstep-induced floor vibrations," in *Proceedings of the 1st ACM International Workshop on Device-Free Human Sensing*, 2019, pp. 31-34.
- [148]M. Lam, M. Mirshekari, S. Pan, P. Zhang, and H. Y. Noh, "Robust occupant detection through step-induced floor vibration by incorporating structural characteristics," in *Dynamics of Coupled Structures, Volume 4*: Springer, 2016, pp. 357-367.
- [149] S. Drira, Y. Reuland, and I. F. Smith, "Model-based interpretation of floor vibrations for indoor occupant tracking," in 26th International Workshop On Intelligent Computing In Engineering. Leuven Belgium, 2019.
- [150] T. G. Zimmerman, J. R. Smith, J. A. Paradiso, D. Allport, and N. Gershenfeld, "Applying electric field sensing to human-computer interfaces," in *Proceedings of the SIGCHI conference on Human factors in computing systems*, 1995, pp. 280-287.
- [151]J. Smith, T. White, C. Dodge, J. Paradiso, N. Gershenfeld, and D. Allport, "Electric field sensing for graphical interfaces," *IEEE Computer Graphics and Applications*, vol. 18, no. 3, pp. 54-60, 1998.
- [152] D. Savio and T. Ludwig, "Smart carpet: A footstep tracking interface," in 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), 2007, vol. 2: IEEE, pp. 754-760.
- [153] C. Lauterbach, A. Steinhage, and A. Techmer, "Large-area wireless sensor system based on smart textiles," in *International Multi-Conference* on Systems, Signals & Devices, 2012: IEEE, pp. 1-2.
- [154]C. Lauterbach, A. Steinhage, and A. Techmer, "A large-area sensor system underneath the floor for ambient assisted living applications," in *Pervasive and mobile sensing and computing for healthcare*: Springer, 2013, pp. 69-87.
- [155] M. Sousa, A. Techmer, A. Steinhage, C. Lauterbach, and P. Lukowicz, "Human tracking and identification using a sensitive floor and wearable accelerometers," in 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2013: IEEE, pp. 166-171.
- [156]H. Rimminen, J. Lindström, and R. Sepponen, "Positioning accuracy and multi-target separation with a human tracking system using near field imaging," *International Journal on Smart Sensing and Intelligent Systems*, vol. 2, no. 1, pp. 156-175, 2009.
- [157] R. Henry, L. Matti, and S. Raimo, "Human tracking using near field imaging," in 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, 2008: IEEE, pp. 148-151.
- [158]H. Rimminen, J. Lindström, M. Linnavuo, and R. Sepponen, "Detection of falls among the elderly by a floor sensor using the electric near field," *IEEE Transactions on Information Technology in Biomedicine*, vol. 14, no. 6, pp. 1475-1476, 2010.
- [159] A. Braun, H. Heggen, and R. Wichert, "CapFloor-a flexible capacitive indoor localization system," in *International Competition on Evaluating* AAL Systems through Competitive Benchmarking, 2011: Springer, pp. 26-35.
- [160]N. Faulkner, B. Parr, F. Alam, M. Legg, and S. Demidenko, "Device Free Localization with Capacitive Sensing Floor," presented at the 2020 IEEE Sensors Application Symposium (SAS), Kuala Lumpur, Malaysia, 9-11 March, 2020.
- [161]N. Faulkner, B. Parr, F. Alam, M. Legg, and S. Demidenko, "CapLoc: A Capacitive Sensing Floor for Real-Time Device Free Localization and Fall Detection," *Ieee Access*, vol. (Under Review), 2020.
- [162]A. Ramezani Akhmareh, M. T. Lazarescu, O. Bin Tariq, and L. Lavagno, "A tagless indoor localization system based on capacitive sensing technology," *Sensors*, vol. 16, no. 9, p. 1448, 2016.
- [163]O. B. Tariq, M. T. Lazarescu, J. Iqbal, and L. Lavagno, "Performance of machine learning classifiers for indoor person localization with capacitive sensors," *Ieee Access*, vol. 5, pp. 12913-12926, 2017.
- [164]O. B. Tariq, M. T. Lazarescu, and L. Lavagno, "Neural Networks for Indoor Human Activity Reconstructions," *IEEE Sensors Journal*, 2020.
- [165] M. Valtonen, J. Maentausta, and J. Vanhala, "Tiletrack: Capacitive human tracking using floor tiles," in 2009 IEEE International Conference on Pervasive Computing and Communications, 2009: IEEE, pp. 1-10.
- [166]M. Valtonen, T. Vuorela, L. Kaila, and J. Vanhala, "Capacitive indoor positioning and contact sensing for activity recognition in smart homes," *Journal of Ambient Intelligence and Smart Environments*, vol. 4, no. 4, pp. 305-334, 2012.
- [167] H. Prance, P. Watson, R. Prance, and S. Beardsmore-Rust, "Position and movement sensing at metre standoff distances using ambient electric field," *Measurement Science and Technology*, vol. 23, no. 11, p. 115101, 2012.

- [168] T. Grosse-Puppendahl et al., "Platypus: Indoor localization and identification through sensing of electric potential changes in human bodies," in *Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services*, 2016, pp. 17-30.
- [169]B. Fu, F. Kirchbuchner, J. von Wilmsdorff, T. Grosse-Puppendahl, A. Braun, and A. Kuijper, "Performing indoor localization with electric potential sensing," *Journal of Ambient Intelligence and Humanized Computing*, vol. 10, no. 2, pp. 731-746, 2019.
- [170]X. Tang and S. Mandal, "Indoor occupancy awareness and localization using passive electric field sensing," *IEEE Transactions on Instrumentation and Measurement*, vol. 68, no. 11, pp. 4535-4549, 2019.
- [171] T. Zhou et al., "P-Loc: a device-free indoor localization system utilizing building power-line network," in Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, 2019, pp. 611-615.
- [172] T. Zhou, Y. Zhang, X. Chen, P. Zhang, and L. Zhang, "E-loc: indoor localization through building electric wiring," in *Proceedings of the 16th* ACM/IEEE International Conference on Information Processing in Sensor Networks, 2017, pp. 311-312.
- [173] N.-W. Gong, S. Hodges, and J. A. Paradiso, "Leveraging conductive inkjet technology to build a scalable and versatile surface for ubiquitous sensing," in *Proceedings of the 13th international conference on Ubiquitous computing*, 2011, pp. 45-54.
- [174]K. Takiguchi, T. Wada, and S. Toyama, "Human body detection that uses electric field by walking," *Journal of Advanced Mechanical Design*, *Systems, and Manufacturing*, vol. 1, no. 3, pp. 294-305, 2007.
- [175]K. Kurita, "Human identification from walking signal based on measurement of current generated by electrostatic induction," *Kansei Engineering International Journal*, vol. 11, no. 4, pp. 183-189, 2012.
- [176] ISO/IEC 18305:2016, "Information technology Real time locating systems - Test and evaluation of localization and tracking systems", ISO/IEC JTC 1/SC 31, 11/01/2016 2016.
- [177]F. Potortì *et al.*, "Comparing the performance of indoor localization systems through the EvAAL framework," *Sensors*, vol. 17, no. 10, p. 2327, 2017.
- [178]D. Lymberopoulos and J. Liu, "The microsoft indoor localization competition: Experiences and lessons learned," *IEEE Signal Processing Magazine*, vol. 34, no. 5, pp. 125-140, 2017.
- [179] A. Popleteev, "HIPS: Human-based indoor positioning system," in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2016: IEEE, pp. 1-7.
- [180] S. Kim, S. Ha, A. Saad, and J. Kim, "Indoor positioning system techniques and security," in 2015 Forth International Conference on e-Technologies and Networks for Development (ICeND), 2015: IEEE, pp. 1-4.
- [181]J. Cho, J. Yu, S. Oh, J. Ryoo, J. Song, and H. Kim, "Wrong siren! a location spoofing attack on indoor positioning systems: The starbucks case study," *IEEE communications magazine*, vol. 55, no. 3, pp. 132-137, 2017.
- [182]S. Tiku and S. Pasricha, "Overcoming Security Vulnerabilities in Deep Learning--based Indoor Localization Frameworks on Mobile Devices," *ACM Transactions on Embedded Computing Systems (TECS)*, vol. 18, no. 6, pp. 1-24, 2019.
- [183] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, "A survey on security and privacy issues in Internet-of-Things," *IEEE Internet of Things Journal*, vol. 4, no. 5, pp. 1250-1258, 2017.
- [184] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, "Evaluating critical security issues of the IoT world: Present and future challenges," *IEEE Internet of things journal*, vol. 5, no. 4, pp. 2483-2495, 2017.

Fakhrul Alam (M'17-SM'19) is an Associate Professor at the Department of Mechanical & Electrical Engineering, School of Food & Advanced Technology, Massey University, New Zealand. He received BSc (Hons) in Electrical & Electronic Engineering from BUET, Bangladesh and MS and Ph.D. in

Electrical Engineering from Virginia Tech, USA. His research

interest includes indoor localization, 5G & visible light communication, IoT & wireless sensor networks.

Nathaniel Faulkner received his BE(Hons) from Massey University, Auckland, New Zealand in Electronic & Computer Engineering in 2016. He is currently pursuing Ph.D. at the same institute. His research interests include indoor positioning, embedded systems design and internet of things.

Baden Parr Received his B.E. degree (Hons.) in Electronics and Computer Engineering from Massey University, Auckland, New Zealand in 2017, where he is currently pursuing a Ph.D. degree. His research interests include 3D camera technology, indoor localization, acoustic imaging, IoT sensor networks and robot design.